zyt温柔发 发表于 2020-3-13 11:06

机器学习之简单线性回归(最小二乘法)

本帖最后由 zyt温柔发 于 2020-3-13 11:34 编辑

0.引入依赖
import numpy as np
import matplotlib.pyplot as plt
1.导入数据(data.csv)(data.csv成绩与学习时间的100×2矩阵)
points = np.genfromtxt("data.csv",delimiter=',')#提取points中的两列数据,分别作为x,yx = points[:,0]y = points[:,1]# 用plt画出散点图plt.scatter(x,y)plt.show()
2.定义损失函数
# 损失函数是系数的函数,另外还要传入数据的x,y
def computer_cost(w,b,points):   
      total_cost = 0   
      M = len(points)   
# 逐点计算平方损失误差,计算平均数   
       for i in range(M):      
             x = points      
             y = points      
             total_cost+= (y-w*x-b)**2   
       return total_cost/M       ### 1//3取整 1/3浮点型
3.定义算法拟合函数
# 先定义一个求平均数的函数
def average(data):   
      sum = 0   
      num = len(data)   
      for i in range(num):      
            sum+= data   
      return sum/num
# 定义核心拟合函数
def fit(points):   
      M = len(points)   
      x_bar = average(points[:,0])   
      sum_yx = 0   
      sum_x2 = 0   
      sum_delta = 0   
      for i in range(M):      
         x = points      
         y = points      
          sum_yx+=y*(x-x_bar)      
          sum_x2+=x**2   
      # 根据公式计算w   
      w = sum_yx/(sum_x2-M*(x_bar**2))   
      for i in range(M):      
         x = points      
         y = points      
         sum_delta+=(y-w*x)   
      b = sum_delta/M   
      return w,b
4.测试
w,b = fit(points)
print('w is:',w)
print('b is:',b)
cost = computer_cost(w,b,points)
print("cost is:",cost)
w is: 1.3224310227553846
b is: 7.991020982269173
cost is: 110.25738346621313
5.画出拟合曲线
plt.scatter(x,y)
# 针对每一个x,计算出预测的y值
pred_y = w*x+b
plt.plot(x,pred_y,c='r')
plt.show()

数据:

红人馆0910 发表于 2020-3-13 11:20

没有bug吧?

雨落惊鸿, 发表于 2020-3-13 11:53

牛啊。。。。
页: [1]
查看完整版本: 机器学习之简单线性回归(最小二乘法)