jackyzhou 发表于 2020-11-16 21:57

用Python爬取贝壳网新房和二手房数据

import random
import requests
from bs4 import BeautifulSoup
import re
import math

USER_AGENTS = [
    "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
    "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
    "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
    "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
    "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
    "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
    "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
    "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
    "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
    "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
]

def create_headers():
    headers = dict()
    headers["User-Agent"] = random.choice(USER_AGENTS)
    headers["Referer"] = "http://www.ke.com"
    return headers

class NewHouse(object):
    def __init__(self, xiaoqu, price, total):
      self.xiaoqu = xiaoqu
      self.price = price
      self.total = total

    def text(self):
      return self.xiaoqu + "," + \
                self.price + "," + \
                self.total

with open("newhouse.txt", "w", encoding='utf-8') as f:
    # 开始获得需要的板块数据
    total_page = 1
    loupan_list = list()
    page = 'http://zh.fang.ke.com/loupan/'
    print(page)
    headers = create_headers()
    response = requests.get(page, timeout=10, headers=headers)
    html = response.content
    soup = BeautifulSoup(html, "lxml")

    # 获得总的页数
    try:
      page_box = soup.find_all('div', class_='page-box')
      matches = re.search('.*data-total-count="(\d+)".*', str(page_box))
      total_page = int(math.ceil(int(matches.group(1)) / 10))
    except Exception as e:
      print(e)

    print(total_page)
    # 从第一页开始,一直遍历到最后一页
    headers = create_headers()
    for i in range(1, total_page + 1):
      page = 'http://zh.fang.ke.com/loupan/pg{0}'.format(i)
      print(page)
      response = requests.get(page, timeout=10, headers=headers)
      html = response.content
      soup = BeautifulSoup(html, "lxml")

      # 获得有小区信息的panel
      house_elements = soup.find_all('li', class_="resblock-list")
      for house_elem in house_elements:
            price = house_elem.find('span', class_="number")
            desc = house_elem.find('span', class_="desc")
            total = house_elem.find('div', class_="second")
            loupan = house_elem.find('a', class_='name')

            # 继续清理数据
            try:
                price = price.text.strip() + desc.text.strip()
            except Exception as e:
                price = '0'

            loupan = loupan.text.replace("\n", "")

            try:
                total = total.text.strip().replace(u'总价', '')
                total = total.replace(u'/套起', '')
            except Exception as e:
                total = '0'

            # 作为对象保存
            loupan = NewHouse(loupan, price, total)
            print(loupan.text())
            loupan_list.append(loupan)

    for loupan in loupan_list:
      f.write(loupan.text() + "\n")
二手楼盘代码:
import random
import requests
from bs4 import BeautifulSoup
import re
import math
from lxml import etree

USER_AGENTS = [
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
        "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
        "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
        "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
        "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
        "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
        "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
        "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
        "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
        "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
        "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
]
chinese_city_district_dict = dict()
chinese_area_dict = dict()


def create_headers():
        headers = dict()
        headers["User-Agent"] = random.choice(USER_AGENTS)
        headers["Referer"] = "http://www.ke.com"
        return headers


class SecHouse(object):
        def __init__(self, district, area, name, price, desc, pic):
                self.district = district
                self.area = area
                self.price = price
                self.name = name
                self.desc = desc
                self.pic = pic

        def text(self):
                return self.district + "," + \
                           self.area + "," + \
                           self.name + "," + \
                           self.price + "," + \
                           self.desc + "," + \
                           self.pic


def get_districts():
        url = 'https://sh.ke.com/xiaoqu/'
        headers = create_headers()
        response = requests.get(url, timeout=10, headers=headers)
        html = response.content
        root = etree.HTML(html)
        elements = root.xpath('///div/div/dl/dd/div/div/a')
        en_names = list()
        ch_names = list()
        for element in elements:
                link = element.attrib['href']
                en_names.append(link.split('/')[-2])
                ch_names.append(element.text)

        # 打印区县英文和中文名列表
        for index, name in enumerate(en_names):
                chinese_city_district_dict = ch_names
        return en_names


def get_areas(district):
        page = "http://sh.ke.com/xiaoqu/{0}".format(district)
        areas = list()
        try:
                headers = create_headers()
                response = requests.get(page, timeout=10, headers=headers)
                html = response.content
                root = etree.HTML(html)
                links = root.xpath('//div/div/dl/dd/div/div/a')

                # 针对a标签的list进行处理
                for link in links:
                        relative_link = link.attrib['href']
                        # 去掉最后的"/"
                        relative_link = relative_link[:-1]
                        # 获取最后一节
                        area = relative_link.split("/")[-1]
                        # 去掉区县名,防止重复
                        if area != district:
                                chinese_area = link.text
                                chinese_area_dict = chinese_area
                                # print(chinese_area)
                                areas.append(area)
                return areas
        except Exception as e:
                print(e)


with open("sechouse.txt", "w", encoding='utf-8') as f:
        # 开始获得需要的板块数据
        total_page = 1
        sec_house_list = list()
        districts = get_districts()
        for district in districts:
                arealist = get_areas(district)
                for area in arealist:
                        # 中文区县
                        chinese_district = chinese_city_district_dict.get(district, "")
                        # 中文版块
                        chinese_area = chinese_area_dict.get(area, "")
                        page = 'http://sh.ke.com/ershoufang/{0}/'.format(area)
                        print(page)
                        headers = create_headers()
                        response = requests.get(page, timeout=10, headers=headers)
                        html = response.content
                        soup = BeautifulSoup(html, "lxml")

                        # 获得总的页数
                        try:
                                page_box = soup.find_all('div', class_='page-box')
                                matches = re.search('.*data-total-count="(\d+)".*', str(page_box))
                                total_page = int(math.ceil(int(matches.group(1)) / 10))
                        except Exception as e:
                                print(e)

                        print(total_page)
                        # 从第一页开始,一直遍历到最后一页
                        headers = create_headers()
                        for i in range(1, total_page + 1):
                                page = 'http://sh.ke.com/ershoufang/{0}/pg{1}'.format(area, i)
                                print(page)
                                response = requests.get(page, timeout=10, headers=headers)
                                html = response.content
                                soup = BeautifulSoup(html, "lxml")

                                # 获得有小区信息的panel
                                house_elements = soup.find_all('li', class_="clear")
                                for house_elem in house_elements:
                                        price = house_elem.find('div', class_="totalPrice")
                                        name = house_elem.find('div', class_='title')
                                        desc = house_elem.find('div', class_="houseInfo")
                                        pic = house_elem.find('a', class_="img").find('img', class_="lj-lazy")

                                        # 继续清理数据
                                        price = price.text.strip()
                                        name = name.text.replace("\n", "")
                                        desc = desc.text.replace("\n", "").strip()
                                        pic = pic.get('data-original').strip()

                                        # 作为对象保存
                                        sec_house = SecHouse(chinese_district, chinese_area, name, price, desc, pic)
                                        print(sec_house.text())
                                        sec_house_list.append(sec_house)

                        for sec_house in sec_house_list:
                                f.write(sec_house.text() + "\n")

小松鼠 发表于 2020-11-19 08:58

皮茶茶 发表于 2020-11-16 22:56

可以 学到辽 租房平台真的easy啊

小松鼠 发表于 2020-11-16 23:09

deyen 发表于 2020-11-17 00:00

值得好好研究,希望楼主多谢点python的东西

启年啊 发表于 2020-11-17 06:51

小松鼠 发表于 2020-11-16 23:09
我有个房产网站,大神可分析一下?

啥样的,有没有链接

小松鼠 发表于 2020-11-17 13:21

启年啊 发表于 2020-11-17 18:51

小松鼠 发表于 2020-11-17 13:21
0898mmf.com

需要啥样的数据

eyoung 发表于 2020-11-17 19:17

学习一下

小松鼠 发表于 2020-11-18 10:15

启年啊 发表于 2020-11-18 13:52

小松鼠 发表于 2020-11-18 10:15
分楼盘名命名 图片缩略图

以楼盘名命名的楼盘图片吗
页: [1] 2
查看完整版本: 用Python爬取贝壳网新房和二手房数据