使用OpenCV识别简单的验证码
本帖最后由 sudoers 于 2024-1-5 23:26 编辑# 使用OpenCV识别验证码
## 图片处理
* 图片切割:由于图片都是数字且间距相等(包含4个数字),因此只需简单切割为4等分即可(适当去除上下和左右边距)
* 图片通道挑选:由于图片的背景具有一些噪声,因此需要对图片进行适当处理。经过观察发现,背景噪声颜色较浅而数字部分颜色较深。由于图片是将像素分为红绿蓝三个通道,像素的值以正整数(值在0-255之间,可以简单理解为像素值越大越"亮")的方式进行存储,因此可以将图片的三个通道像素值分别计算平均数,取平均数较小的通道(平均数越小说明越"暗",浅色的噪声就越少)进行处理。
* 图片模糊去噪:将图片进一步模糊去噪,减少噪声影响
* 二值化处理:将图片按照阈值(高于阈值则置为255,低于阈值则置为0)转换为黑白两色
代码如下:
`ImgProcess.py`
```python
import cv2
from cv2 import Mat
IMG_SPLIT_SIZE = 4
def img_split(input: Mat, size: int) -> list:
"""
将图片分割成N份
:param input: 输入图片
:param size:切合的份数
:return: 图片列表
"""
result = []
h, w, _ = input.shape
interval = int(w / size)
lx = 0
ly = h
for index in range(0, size):
split = input[int(ly * 0.2):int(ly * 0.7),# 去除上方20%,下方30%,每个字符左边去除10%,右边去除35%
lx + interval * index + int(interval * 0.1): lx + interval * index + int(interval * 0.65)]
result.append(split)
return result
def cal_average(mat: Mat) -> float:
"""
计算二值化后或者单通道图片像素的平均值
:param mat:
:return:
"""
h, w = mat.shape
total = 0
count = 0
for i in range(h):
for j in range(w):
total += mat
count += 1
return total / count
def calculate_min_average(img: Mat) -> (Mat, str, float):
"""
获取图片所有通道中像素均值最小的通道
:param img: 输入图像
:return: 通道图像,通道名称,均值
"""
B, G, R = cv2.split(img)
avg_b = cal_average(B)
avg_g = cal_average(G)
avg_r = cal_average(R)
min_img = B
min_avg = avg_b
img_name = 'B'
if avg_g < min_avg:
min_avg = avg_g
min_img = G
img_name = 'G'
if avg_r < min_avg:
min_avg = avg_r
min_img = R
img_name = 'R'
return min_img, img_name, min_avg
def process_check_code(img: Mat) -> list:
"""
处理图片
:param img: 输入图片
:return: 图片列表
"""
result = []
img_splits = img_split(img, IMG_SPLIT_SIZE)
for index, split in enumerate(img_splits):
one_img, _, _ = calculate_min_average(split)
one_img_blur = cv2.medianBlur(one_img, 3)
_, one_img_binary = cv2.threshold(one_img_blur, 156, 255, cv2.THRESH_BINARY_INV)
result.append(one_img_binary)
return result
```
## 模型训练
* 样本采集:从网站不停刷新,将验证码保存到本地,大约30张即可。
* 图片标注:将图片以图片内容进行命名,方便后续处理。例如:图片内容是6970,则将图片命名为`6970.jpg`
* 训练模型:遍历文件夹,将图片读取后进行处理,并将图片作为标签进行处理。
`TrainModel.py`
```python
import cv2.ml
import numpy as np
from ImgProcess import process_check_code
import os
def train_and_save_model(check_code_dir: str, model_save_path: str):
"""
训练模型并保存
:param check_code_dir: 保存有验证码图片的目录,图片以验证码上的数字作为文件名。例如:图片中的数字为0541,那么文件名称就是0541.jpg
:param model_save_path:模型保存地址
:return:
"""
samples = []
labels = []
for file in os.listdir(check_code_dir):
file_path = os.path.join(check_code_dir, file)
label_str, _ = os.path.splitext(file)
img = cv2.imread(file_path, cv2.IMREAD_COLOR)
mats = process_check_code(img)
for mat in mats:
samples.append(mat.flatten())
for label in label_str:
labels.append(int(label))
model = cv2.ml.KNearest.create()
model.train(np.array(samples, np.float32), cv2.ml.ROW_SAMPLE, np.array(labels, np.int32))
model.save(model_save_path)
```
## 图片识别
`Recognize.py`
```python
import os
import cv2
import cv2.ml
from ImgProcess import process_check_code
from TrainModel import train_and_save_model
import numpy as np
def recognize(model: cv2.ml.KNearest, mat: cv2.Mat) -> str:
buffer = []
mats = process_check_code(mat)
for i, mat in enumerate(mats):
sample = np.array(, np.float32)
ret, results, neighbours, distances = model.findNearest(sample, k=1)
buffer.append(str(int(ret)))
return "".join(buffer)
if __name__ == '__main__':
check_code_dir = "check_code"
model_path = "model"
if not os.path.exists(model_path):
train_and_save_model(check_code_dir, model_path)
model = cv2.ml.KNearest.load(model_path)
mat = cv2.imread("test.jpg")
code = recognize(model, mat)
print(f"Code = {code}")
```
附:
普通处理和按照通道处理对比图。右侧为均值最小的通道
我用tesseract OCR,感觉目前够用。之前还用了百度在线的api接口,用下来我要识别的内容还远不如tess,也是神了,百度可以收费的 BonnieRan 发表于 2024-1-6 04:31
想问一下,按照通道处理后的识别率怎么样
还有用30张验证码训练的模型多大,大概要多长时间呢
目前测试来看,在公司系统上出现的验证码都能识别。
另外这个模型非常简单,训练耗时很少,属于非常简单且基本的模型算法 想问一下,按照通道处理后的识别率怎么样
还有用30张验证码训练的模型多大,大概要多长时间呢 感谢楼主的分享,很好用 学习一下 OCR识别,不错的 先试试 看看如何 是否只针对数字识别,
识别不太像的,是否要手动添加字典? 感谢分享 这个有具体的使用方法吗 识别这种字母数字什么的,用K210效果应该更好一点吧