vcvycy 发表于 2018-6-26 23:44

【Android】人脸检测MTCNN移植到 Android安卓

本帖最后由 vcvycy 于 2018-6-27 21:03 编辑

今天刚做好了,断断续续搞了一周。终于改好了,MTCNN移植到Android。
做了一个简单的demo。
虽然是实验室项目需要的,还是放出来,不知道有没有人需要。这个是人脸检测,就是从图中框出人脸,还有一个人脸识别,google的facenet,我也移植到安卓了。有人需要再加进来。主要参考自https://github.com/AITTSMD/MTCNN-Tensorflow
大致流程:
一、Tensorflow 模型固化      
       将PNet、ONet、RNet 网络参数.npy固化成.pb格式,方便java载入      固化后的文件在assets中,文件名mtcnn_freezed_model.pb
二、引入android tensorflow lite 库      
   只需在build.gradle(module)最后添加以下几行语句即可。参考自官网。
      
allprojects {
    repositories {
      jcenter()
    }
}

dependencies {
    compile 'org.tensorflow:tensorflow-android:+'
}

三、看MTCNN论文+看MTCNN python实现,然后改成java   
    有很多坑,比如论文很多细节没讲清,比如android版tensorflow lite 资料太少;Bitmap需要沿着对角线翻转再传入神经网络。然后就差不多了。

四、核心代码【主要3个文件,加起来代码不多,大概600行,全贴出来】
(1)MTCNN.JAVA
package com.example.vcvyc.mtcnn_new;
/*
MTCNN For Android
by cjf@xmu 20180625
*/
import android.content.ContentUris;
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.graphics.Point;
import android.graphics.Rect;
import android.support.v4.app.NotificationCompat;
import android.util.Log;
import android.widget.ImageView;

import org.tensorflow.Operation;
import org.tensorflow.contrib.android.TensorFlowInferenceInterface;

import java.util.Vector;

import static java.lang.Math.copySign;
import static java.lang.Math.floor;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.scalb;

public class MTCNN {
    //参数
    private float factor=0.709f;
    private float PNetThreshold=0.6f;
    private float RNetThreshold=0.7f;
    private float ONetThreshold=0.7f;
    //MODEL PATH
    private static final String MODEL_FILE= "file:///android_asset/mtcnn_freezed_model.pb";
    //tensor name
    private static final String   PNetInName="pnet/input:0";
    private static final String[] PNetOutName =new String[]{"pnet/prob1:0","pnet/conv4-2/BiasAdd:0"};
    private static final String   RNetInName="rnet/input:0";
    private static final String[] RNetOutName =new String[]{ "rnet/prob1:0","rnet/conv5-2/conv5-2:0",};
    private static final String   ONetInName="onet/input:0";
    private static final String[] ONetOutName =new String[]{ "onet/prob1:0","onet/conv6-2/conv6-2:0","onet/conv6-3/conv6-3:0"};
    //安卓相关
    publiclong lastProcessTime;   //最后一张图片处理的时间ms
    private static final String TAG="MTCNN";
    private AssetManager assetManager;
    private TensorFlowInferenceInterface inferenceInterface;
    MTCNN(AssetManager mgr){
      assetManager=mgr;
      loadModel();
    }
    private boolean loadModel() {
      //AssetManager
      try {
            inferenceInterface = new TensorFlowInferenceInterface(assetManager, MODEL_FILE);
            Log.d("Facenet","load model success");
      }catch(Exception e){
            Log.e("Facenet","load model failed"+e);
            return false;
      }
      return true;
    }
    //读取Bitmap像素值,预处理(-127.5 /128),转化为一维数组返回
    private float[] normalizeImage(Bitmap bitmap){
      int w=bitmap.getWidth();
      int h=bitmap.getHeight();
      float[] floatValues=new float;
      int[]   intValues=new int;
      bitmap.getPixels(intValues,0,bitmap.getWidth(),0,0,bitmap.getWidth(),bitmap.getHeight());
      float imageMean=127.5f;
      float imageStd=128;

      for (int i=0;i<intValues.length;i++){
            final int val=intValues;
            floatValues = (((val >> 16) & 0xFF) - imageMean) / imageStd;
            floatValues = (((val >> 8) & 0xFF) - imageMean) / imageStd;
            floatValues = ((val & 0xFF) - imageMean) / imageStd;
      }
      return floatValues;
    }
    /*
       检测人脸,minSize是最小的人脸像素值
   */
    private Bitmap bitmapResize(Bitmap bm, float scale) {
      int width = bm.getWidth();
      int height = bm.getHeight();
      // CREATE A MATRIX FOR THE MANIPULATION。matrix指定图片仿射变换参数
      Matrix matrix = new Matrix();
      // RESIZE THE BIT MAP
      matrix.postScale(scale, scale);
      Bitmap resizedBitmap = Bitmap.createBitmap(
                bm, 0, 0, width, height, matrix, true);
      return resizedBitmap;
    }
    //输入前要翻转,输出也要翻转
    privateint PNetForward(Bitmap bitmap,float [][]PNetOutProb,float[][][]PNetOutBias){
      int w=bitmap.getWidth();
      int h=bitmap.getHeight();

      float[] PNetIn=normalizeImage(bitmap);
      Utils.flip_diag(PNetIn,h,w,3); //沿着对角线翻转
      inferenceInterface.feed(PNetInName,PNetIn,1,w,h,3);
      inferenceInterface.run(PNetOutName,false);
      int PNetOutSizeW=(int)Math.ceil(w*0.5-5);
      int PNetOutSizeH=(int)Math.ceil(h*0.5-5);
      float[] PNetOutP=new float;
      float[] PNetOutB=new float;
      inferenceInterface.fetch(PNetOutName,PNetOutP);
      inferenceInterface.fetch(PNetOutName,PNetOutB);
      //【写法一】先翻转,后转为2/3维数组
      Utils.flip_diag(PNetOutP,PNetOutSizeW,PNetOutSizeH,2);
      Utils.flip_diag(PNetOutB,PNetOutSizeW,PNetOutSizeH,4);
      Utils.expand(PNetOutB,PNetOutBias);
      Utils.expandProb(PNetOutP,PNetOutProb);
      /*
      *【写法二】这个比较快,快了3ms。意义不大,用上面的方法比较直观
      for (int y=0;y<PNetOutSizeH;y++)
            for (int x=0;x<PNetOutSizeW;x++){
               int idx=PNetOutSizeH*x+y;
               PNetOutProb=PNetOutP;
               for(int i=0;i<4;i++)
                   PNetOutBias=PNetOutB;
            }
      */
      return 0;
    }
    //Non-Maximum Suppression
    //nms,不符合条件的deleted设置为true
    private void nms(Vector<Box> boxes,float threshold,String method){
      //NMS.两两比对
      //int delete_cnt=0;
      int cnt=0;
      for(int i=0;i<boxes.size();i++) {
            Box box = boxes.get(i);
            if (!box.deleted) {
                //score<0表示当前矩形框被删除
                for (int j = i + 1; j < boxes.size(); j++) {
                  Box box2=boxes.get(j);
                  if (!box2.deleted) {
                        int x1 = max(box.box, box2.box);
                        int y1 = max(box.box, box2.box);
                        int x2 = min(box.box, box2.box);
                        int y2 = min(box.box, box2.box);
                        if (x2 < x1 || y2 < y1) continue;
                        int areaIoU = (x2 - x1 + 1) * (y2 - y1 + 1);
                        float iou=0f;
                        if (method.equals("Union"))
                            iou = 1.0f*areaIoU / (box.area() + box2.area() - areaIoU);
                        else if (method.equals("Min")) {
                            iou = 1.0f * areaIoU / (min(box.area(), box2.area()));
                            Log.i(TAG,"iou="+iou);
                        }
                        if (iou >= threshold) { //删除prob小的那个框
                            if (box.score>box2.score)
                              box2.deleted=true;
                            else
                              box.deleted=true;
                            //delete_cnt++;
                        }
                  }
                }
            }
      }
      //Log.i(TAG,"sum:"+boxes.size()+" delete:"+delete_cnt);
    }
    private int generateBoxes(float[][] prob,float[][][]bias,float scale,float threshold,Vector<Box> boxes){
      int h=prob.length;
      int w=prob.length;
      //Log.i(TAG,"height:"+prob.length+" width:"+prob.length);
      for (int y=0;y<h;y++)
            for (int x=0;x<w;x++){
                float score=prob;
                //only accept prob >threadshold(0.6 here)
                if (score>PNetThreshold){
                  Box box=new Box();
                  //score
                  box.score=score;
                  //box
                  box.box=Math.round(x*2/scale);
                  box.box=Math.round(y*2/scale);
                  box.box=Math.round((x*2+11)/scale);
                  box.box=Math.round((y*2+11)/scale);
                  //bbr
                  for(int i=0;i<4;i++)
                        box.bbr=bias;
                  //add
                  boxes.addElement(box);
                }
            }
      return 0;
    }
    private void BoundingBoxReggression(Vector<Box> boxes){
      for (int i=0;i<boxes.size();i++)
            boxes.get(i).calibrate();
    }
    //Pnet + Bounding Box Regression + Non-Maximum Regression
    /* NMS执行完后,才执行Regression
   * (1) For each scale , use NMS with threshold=0.5
   * (2) For all candidates , use NMS with threshold=0.7
   * (3) Calibrate Bounding Box
   * 注意:CNN输入图片最上面一行,坐标为。所以Bitmap需要对折后再跑网络;网络输出同理.
   */
    private Vector<Box> PNet(Bitmap bitmap,int minSize){
      int whMin=min(bitmap.getWidth(),bitmap.getHeight());
      float currentFaceSize=minSize;//currentFaceSize=minSize/(factor^k) k=0,1,2... until excced whMin
      Vector<Box> totalBoxes=new Vector<Box>();
      //【1】Image Paramid and Feed to Pnet
      while (currentFaceSize<=whMin){
            float scale=12.0f/currentFaceSize;
            //(1)Image Resize
            Bitmap bm=bitmapResize(bitmap,scale);
            int w=bm.getWidth();
            int h=bm.getHeight();
            //(2)RUN CNN
            int PNetOutSizeW=(int)(Math.ceil(w*0.5-5)+0.5);
            int PNetOutSizeH=(int)(Math.ceil(h*0.5-5)+0.5);
            float[][]   PNetOutProb=new float;;
            float[][][] PNetOutBias=new float;
            PNetForward(bm,PNetOutProb,PNetOutBias);
            //(3)数据解析
            Vector<Box> curBoxes=new Vector<Box>();
            generateBoxes(PNetOutProb,PNetOutBias,scale,PNetThreshold,curBoxes);
            //Log.i(TAG,"CNN Output Box number:"+curBoxes.size()+" Scale:"+scale);
            //(4)nms 0.5
            nms(curBoxes,0.5f,"Union");
            //(5)add to totalBoxes
            for (int i=0;i<curBoxes.size();i++)
                if (!curBoxes.get(i).deleted)
                  totalBoxes.addElement(curBoxes.get(i));
            //Face Size等比递增
            currentFaceSize/=factor;
      }
      //NMS 0.7
      nms(totalBoxes,0.7f,"Union");
      //BBR
      BoundingBoxReggression(totalBoxes);
      return Utils.updateBoxes(totalBoxes);
    }
    //截取box中指定的矩形框(越界要处理),并resize到size*size大小,返回数据存放到data中。
    public Bitmap tmp_bm;
    private void crop_and_resize(Bitmap bitmap,Box box,int size,float[] data){
      //(2)crop and resize
      Matrix matrix = new Matrix();
      float scale=1.0f*size/box.width();
      matrix.postScale(scale, scale);
      Bitmap croped=Bitmap.createBitmap(bitmap, box.left(),box.top(),box.width(), box.height(),matrix,true);
      //(3)save
      int[] pixels_buf=new int;
      croped.getPixels(pixels_buf,0,croped.getWidth(),0,0,croped.getWidth(),croped.getHeight());
      float imageMean=127.5f;
      float imageStd=128;
      for (int i=0;i<pixels_buf.length;i++){
            final int val=pixels_buf;
            data = (((val >> 16) & 0xFF) - imageMean) / imageStd;
            data = (((val >> 8) & 0xFF) - imageMean) / imageStd;
            data = ((val & 0xFF) - imageMean) / imageStd;
      }
    }
    /*
   * RNET跑神经网络,将score和bias写入boxes
   */
    private void RNetForward(float[] RNetIn,Vector<Box>boxes){
      int num=RNetIn.length/24/24/3;
      //feed & run
      inferenceInterface.feed(RNetInName,RNetIn,num,24,24,3);
      inferenceInterface.run(RNetOutName,false);
      //fetch
      float[] RNetP=new float;
      float[] RNetB=new float;
      inferenceInterface.fetch(RNetOutName,RNetP);
      inferenceInterface.fetch(RNetOutName,RNetB);
      //转换
      for (int i=0;i<num;i++) {
            boxes.get(i).score = RNetP;
            for (int j=0;j<4;j++)
                boxes.get(i).bbr=RNetB;
      }
    }
    //Refine Net
    private Vector<Box> RNet(Bitmap bitmap,Vector<Box> boxes){
      //RNet Input Init
      int num=boxes.size();
      float[] RNetIn=new float;
      float[] curCrop=new float;
      int RNetInIdx=0;
      for (int i=0;i<num;i++){
            crop_and_resize(bitmap,boxes.get(i),24,curCrop);
            Utils.flip_diag(curCrop,24,24,3);
            //Log.i(TAG,"Pixels values:"+curCrop+" "+curCrop);
            for (int j=0;j<curCrop.length;j++) RNetIn= curCrop;
      }
      //Run RNet
      RNetForward(RNetIn,boxes);
      //RNetThreshold
      for (int i=0;i<num;i++)
            if (boxes.get(i).score<PNetThreshold)
                boxes.get(i).deleted=true;
      //Nms
      nms(boxes,0.7f,"Union");
      BoundingBoxReggression(boxes);
      return Utils.updateBoxes(boxes);
    }
    /*
   * ONet跑神经网络,将score和bias写入boxes
   */
    private void ONetForward(float[] ONetIn,Vector<Box>boxes){
      int num=ONetIn.length/48/48/3;
      //feed & run
      inferenceInterface.feed(ONetInName,ONetIn,num,48,48,3);
      inferenceInterface.run(ONetOutName,false);
      //fetch
      float[] ONetP=new float; //prob
      float[] ONetB=new float; //bias
      float[] ONetL=new float; //landmark
      inferenceInterface.fetch(ONetOutName,ONetP);
      inferenceInterface.fetch(ONetOutName,ONetB);
      inferenceInterface.fetch(ONetOutName,ONetL);
      //转换
      for (int i=0;i<num;i++) {
            //prob
            boxes.get(i).score = ONetP;
            //bias
            for (int j=0;j<4;j++)
                boxes.get(i).bbr=ONetB;

            //landmark
            for (int j=0;j<5;j++) {
                int x=boxes.get(i).left()+(int) (ONetL*boxes.get(i).width());
                int y= boxes.get(i).top()+(int) (ONetL*boxes.get(i).height());
                boxes.get(i).landmark = new Point(x,y);
                //Log.i(TAG," landmarkd "+x+ ""+y);
            }
      }
    }
    //ONet
    private Vector<Box> ONet(Bitmap bitmap,Vector<Box> boxes){
      //ONet Input Init
      int num=boxes.size();
      float[] ONetIn=new float;
      float[] curCrop=new float;
      int ONetInIdx=0;
      for (int i=0;i<num;i++){
            crop_and_resize(bitmap,boxes.get(i),48,curCrop);
            Utils.flip_diag(curCrop,48,48,3);
            for (int j=0;j<curCrop.length;j++) ONetIn= curCrop;
      }
      //Run ONet
      ONetForward(ONetIn,boxes);
      //ONetThreshold
      for (int i=0;i<num;i++)
            if (boxes.get(i).score<ONetThreshold)
                boxes.get(i).deleted=true;
      BoundingBoxReggression(boxes);
      //Nms
      nms(boxes,0.7f,"Min");
      return Utils.updateBoxes(boxes);
    }
    private void square_limit(Vector<Box>boxes,int w,int h){
      //square
      for (int i=0;i<boxes.size();i++) {
            boxes.get(i).toSquareShape();
            boxes.get(i).limit_square(w,h);
      }
    }
    /*
   * 参数:
   *   bitmap:要处理的图片
   *   minFaceSize:最小的人脸像素值.(此值越大,检测越快)
   * 返回:
   *   人脸框
   */
    public Vector<Box> detectFaces(Bitmap bitmap,int minFaceSize) {
      long t_start = System.currentTimeMillis();
      //【1】PNet generate candidate boxes
      Vector<Box> boxes=PNet(bitmap,minFaceSize);
      square_limit(boxes,bitmap.getWidth(),bitmap.getHeight());
      //【2】RNet
      boxes=RNet(bitmap,boxes);
      square_limit(boxes,bitmap.getWidth(),bitmap.getHeight());
      //【3】ONet
      boxes=ONet(bitmap,boxes);
      //return
      Log.i(TAG,"Mtcnn Detection Time:"+(System.currentTimeMillis()-t_start));
      lastProcessTime=(System.currentTimeMillis()-t_start);
      returnboxes;
    }
}

(2)Utils.Java
package com.example.vcvyc.mtcnn_new;
/*
MTCNN For Android
by cjf@xmu 20180625
*/
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Point;
import android.graphics.Rect;
import android.util.Log;
import android.widget.ImageView;

import java.util.Vector;

public class Utils {
    //复制图片,并设置isMutable=true
    public static Bitmap copyBitmap(Bitmap bitmap){
      return bitmap.copy(bitmap.getConfig(),true);
    }
    //在bitmap中画矩形
    public static void drawRect(Bitmap bitmap,Rect rect){
      try {
            Canvas canvas = new Canvas(bitmap);
            Paint paint = new Paint();
            int r=255;//(int)(Math.random()*255);
            int g=0;//(int)(Math.random()*255);
            int b=0;//(int)(Math.random()*255);
            paint.setColor(Color.rgb(r, g, b));
            paint.setStrokeWidth(1+bitmap.getWidth()/500 );
            paint.setStyle(Paint.Style.STROKE);
            canvas.drawRect(rect, paint);
      }catch (Exception e){
            Log.i("Utils"," error"+e);
      }
    }
    //在图中画点
    public static void drawPoints(Bitmap bitmap, Point[] landmark){
      for (int i=0;i<landmark.length;i++){
            int x=landmark.x;
            int y=landmark.y;
            //Log.i("Utils"," landmarkd "+x+ ""+y);
            drawRect(bitmap,new Rect(x-1,y-1,x+1,y+1));
      }
    }
    //Flip alone diagonal
    //对角线翻转。data大小原先为h*w*stride,翻转后变成w*h*stride
    public static void flip_diag(float[]data,int h,int w,int stride){
      float[] tmp=new float;
      for (int i=0;i<w*h*stride;i++) tmp=data;
      for (int y=0;y<h;y++)
            for (int x=0;x<w;x++){
               for (int z=0;z<stride;z++)
               data[(x*h+y)*stride+z]=tmp[(y*w+x)*stride+z];
            }
    }
    //src转为二维存放到dst中
    public static void expand(float[] src,float[][]dst){
      int idx=0;
      for (int y=0;y<dst.length;y++)
            for (int x=0;x<dst.length;x++)
                dst=src;
    }
    //src转为三维存放到dst中
    public static void expand(float[] src,float[][][] dst){
      int idx=0;
      for (int y=0;y<dst.length;y++)
            for (int x=0;x<dst.length;x++)
                for (int c=0;c<dst.length;c++)
                dst=src;

    }
    //dst=src[:,:,1]
    public static void expandProb(float[] src,float[][]dst){
      int idx=0;
      for (int y=0;y<dst.length;y++)
            for (int x=0;x<dst.length;x++)
                dst=src;
    }
    //box转化为rect
    public static Rect[] boxes2rects(Vector<Box> boxes){
      int cnt=0;
      for (int i=0;i<boxes.size();i++) if (!boxes.get(i).deleted) cnt++;
      Rect[] r=new Rect;
      int idx=0;
      for (int i=0;i<boxes.size();i++)
            if (!boxes.get(i).deleted)
                r=boxes.get(i).transform2Rect();
      return r;
    }
    //删除做了delete标记的box
    public static Vector<Box> updateBoxes(Vector<Box> boxes){
      Vector<Box> b=new Vector<Box>();
      for (int i=0;i<boxes.size();i++)
            if (!boxes.get(i).deleted)
                b.addElement(boxes.get(i));
      return b;
    }
    //
    static public void showPixel(int v){
      Log.i("MainActivity","Pixel:R"+((v>>16)&0xff)+"G:"+((v>>8)&0xff)+ " B:"+(v&0xff));
    }
}
(3)Box.java 【保存人脸框+人脸关键点(眼睛鼻子嘴巴)】package com.example.vcvyc.mtcnn_new;
/*
MTCNN For Android
by cjf@xmu 20180625
*/
import android.graphics.Point;
import android.graphics.Rect;
import android.util.Log;

import static java.lang.Math.max;
import static java.lang.Math.min;

public class Box {
    publicint[] box;       //left:box,top:box,right:box,bottom:box
    publicfloat score;    //probability
    publicfloat[] bbr;    //bounding box regression
    publicboolean deleted;
    publicPoint[] landmark; //facial landmark.只有ONet输出Landmark
    Box(){
      box=new int;
      bbr=new float;
      deleted=false;
      landmark=new Point;
    }
    public int left(){return box;}
    public int right(){return box;}
    public int top(){return box;}
    public int bottom(){return box;}
    public int width(){return box-box+1;}
    public int height(){return box-box+1;}
    //转为rect
    public Rect transform2Rect(){
      Rect rect=new Rect();
      rect.left=Math.round(box);
      rect.top=Math.round(box);
      rect.right=Math.round(box);
      rect.bottom=Math.round(box);
      returnrect;
    }
    //面积
    publicint area(){
      return width()*height();
    }
    //Bounding Box Regression
    public void calibrate(){
      int w=box-box+1;
      int h=box-box+1;
      box=(int)(box+w*bbr);
      box=(int)(box+h*bbr);
      box=(int)(box+w*bbr);
      box=(int)(box+h*bbr);
      for (int i=0;i<4;i++) bbr=0.0f;
    }
    //当前box转为正方形
    public void toSquareShape(){
      int w=width();
      int h=height();
      if (w>h){
            box-=(w-h)/2;
            box+=(w-h+1)/2;
      }else{
            box-=(h-w)/2;
            box+=(h-w+1)/2;
      }
    }
    //防止边界溢出,并维持square大小
    public void limit_square(int w,int h){
      if (box<0 || box<0){
            int len=max(-box,-box);
            box+=len;
            box+=len;
      }
      if (box>=w || box>=h){
            int len=max(box-w+1,box-h+1);
            box-=len;
            box-=len;
      }
    }
    public void limit_square2(int w,int h){
      if (width() > w) box-=width()-w;
      if (height()> h) box-=height()-h;
      if (box<0){
            int sz=-box;
            box+=sz;
            box+=sz;
      }
      if (box<0){
            int sz=-box;
            box+=sz;
            box+=sz;
      }
      if (box>=w){
            int sz=box-w+1;
            box-=sz;
            box-=sz;
      }
      if (box>=h){
            int sz=box-h+1;
            box-=sz;
            box-=sz;
      }
    }
}
最终项目:https://github.com/vcvycy/MTCNN4Android
效果图:
https://img-blog.csdn.net/20180626233548442?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ZjdnljeQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70https://img-blog.csdn.net/20180626233616728?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ZjdnljeQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70

注意:这个项目只包含人脸检测,也就是找出人脸框,不包含人脸识别(也就是无法识别当前人脸框里的人是谁)
人脸识别我在另一个帖子里发了,感兴趣的可以看看,链接:https://www.52pojie.cn/thread-758292-1-1.html。

vcvycy 发表于 2018-6-27 11:52

lovenuanxin 发表于 2018-6-27 07:57
楼主可以试试腾讯的ncnn,c++源码开源,jni层可控;其实我现在缺计算特征值判断是否是同一个人,和实时处理 ...

我喜欢用google的东西~.
判断同一个人,用facenet,我也移植过去。但是想在安卓实时处理不好做,facenet效果好,但是慢。
你可以试试其他小一点的神经网络。
https://github.com/vcvycy/Android_Facenet 这是我代码。

vcvycy 发表于 2018-6-27 20:33

湖北吴彦祖 发表于 2018-6-27 15:01
人脸解锁么??nice啊 。。。。扶你上去

这个只包含人脸检测。也就是从图中框出所有的人脸,然后定位眼睛/鼻子/嘴巴位置。
人脸识别才是识别图中的人是谁。
人脸识别我也实现了,不过在另一个项目中:
https://github.com/vcvycy/Android_Facenet

炫金呀 发表于 2018-6-26 23:57

菊花朝墙 发表于 2018-6-27 00:09

感谢分享,向大佬学习学习!!!

8787520 发表于 2018-6-27 00:12

很不错的代码!看起来很有游戏,有时间玩玩。

wuxin110 发表于 2018-6-27 00:13

像大佬致敬!

dadao815 发表于 2018-6-27 00:31

感谢楼主的热心指导!!!!!!!!!

一片小朵朵 发表于 2018-6-27 00:37

感谢楼主分享

52ZJU 发表于 2018-6-27 00:39

woc!!!这个是好东西啊

lovenuanxin 发表于 2018-6-27 07:57

楼主可以试试腾讯的ncnn,c++源码开源,jni层可控;其实我现在缺计算特征值判断是否是同一个人,和实时处理,楼主有何建议么

liuyanjie2012 发表于 2018-6-27 07:59

谢谢分享,学习了
页: [1] 2 3
查看完整版本: 【Android】人脸检测MTCNN移植到 Android安卓