吾爱破解 - 52pojie.cn

 找回密码
 注册[Register]

QQ登录

只需一步,快速开始

查看: 2378|回复: 18
收起左侧

[求助] 用python写了一个自认为完美的股票交易的策略,跑不起来怎么回事

[复制链接]
best大毛 发表于 2024-10-3 11:46
[Python] 纯文本查看 复制代码
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
```python
import pandas as pd
import numpy as np
import logging
 
# 设置日志级别
logging.basicConfig(level=logging.INFO)
 
def flexible_calculate_macd(data, short_window_range=(10, 15), long_window_range=(20, 30), signal_window_range=(5, 10)):
    """计算 MACD 指标,参数范围可调整"""
    if 'close' not in data.columns:
        logging.warning("数据中缺少 'close' 列,无法计算 MACD。")
        return data
 
    short_window = np.random.randint(*short_window_range)
    long_window = np.random.randint(*long_window_range)
    signal_window = np.random.randint(*signal_window_range)
 
    exp1 = data['close'].ewm(span=short_window, adjust=False).mean()
    exp2 = data['close'].ewm(span=long_window, adjust=False).mean()
    data['macd'] = exp1 - exp2
    data['signal_line'] = data['macd'].ewm(span=signal_window, adjust=False).mean()
    data['macd_diff'] = data['macd'] - data['signal_line']
    return data
 
def flexible_calculate_rsi(data, period_range=(10, 20)):
    """计算相对强弱指标(RSI),参数范围可调整"""
    if 'close' not in data.columns:
        logging.warning("数据中缺少 'close' 列,无法计算 RSI。")
        return data
 
    period = np.random.randint(*period_range)
    delta = data['close'].diff()
    gain = delta.where(delta > 0, 0)
    loss = -delta.where(delta < 0, 0)
    avg_gain = gain.ewm(alpha=1/period, adjust=False).mean()
    avg_loss = loss.ewm(alpha=1/period, adjust=False).mean()
    rs = avg_gain / avg_loss
    data['rsi'] = 100 - (100 / (1 + rs))
    return data
 
def flexible_calculate_bias(data, n_range=(5, 8)):
    """计算乖离率(BIAS),参数范围可调整"""
    if 'close' not in data.columns:
        logging.warning("数据中缺少 'close' 列,无法计算 BIAS。")
        return data
 
    n = np.random.randint(*n_range)
    ma = data['close'].ewm(alpha=1/n, adjust=False).mean()
    data['bias'] = (data['close'] - ma) / ma * 100
    return data
 
def flexible_calculate_williams_r(data, period_range=(10, 15)):
    """计算威廉指标(%R),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns or 'close' not in data.columns:
        logging.warning("数据缺少 'high'、'low' 或 'close' 列,无法计算威廉指标。")
        return data
 
    period = np.random.randint(*period_range)
    highest_high = data['high'].rolling(window=period).max()
    lowest_low = data['low'].rolling(window=period).min()
    data['williams_r'] = (highest_high - data['close']) / (highest_high - lowest_low) * -100
    return data
 
def flexible_calculate_kdj(data, n_range=(7, 12), m1_range=(2, 4), m2_range=(2, 4)):
    """计算随机指标(KDJ),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns or 'close' not in data.columns:
        logging.warning("数据缺少 'high'、'low' 或 'close' 列,无法计算 KDJ。")
        return data
 
    n = np.random.randint(*n_range)
    m1 = np.random.randint(*m1_range)
    m2 = np.random.randint(*m2_range)
    lowest_low = data['low'].rolling(window=n).min()
    highest_high = data['high'].rolling(window=n).max()
    rsv = ((data['close'] - lowest_low) / (highest_high - lowest_low)) * 100
    k = rsv.ewm(span=m1, adjust=False).mean()
    d = k.ewm(span=m2, adjust=False).mean()
    j = 3 * k - 2 * d
    data['k'] = k
    data['d'] = d
    data['j'] = j
    return data
 
def flexible_calculate_cci(data, period_range=(15, 25)):
    """计算顺势指标(CCI),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns or 'close' not in data.columns:
        logging.warning("数据缺少 'high'、'low' 或 'close' 列,无法计算 CCI。")
        return data
 
    period = np.random.randint(*period_range)
    typical_price = (data['high'] + data['low'] + data['close']) / 3
    mean_deviation = typical_price.rolling(window=period).apply(lambda x: np.abs(x - x.mean()).mean())
    data['cci'] = (typical_price - typical_price.rolling(window=period).mean()) / (0.015 * mean_deviation)
    return data
 
def flexible_calculate_adx(data, period_range=(10, 15)):
    """计算平均趋向指标(ADX),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns or 'close' not in data.columns:
        logging.warning("数据缺少 'high'、'low' 或 'close' 列,无法计算 ADX。")
        return data
 
    period = np.random.randint(*period_range)
    plus_dm = data['high'].diff()
    minus_dm = data['low'].diff()
    plus_dm[plus_dm < 0] = 0
    minus_dm[minus_dm > 0] = 0
    true_range = pd.DataFrame({'high_low': data['high'] - data['low'],
                               'high_close': np.abs(data['high'] - data['close'].shift()),
                               'low_close': np.abs(data['low'] - data['close'].shift())})
    true_range['tr'] = true_range.max(axis=1)
    plus_di = 100 * (plus_dm.ewm(alpha=1/period, adjust=False).mean() / true_range['tr'].ewm(alpha=1/period, adjust=False).mean())
    minus_di = 100 * (-minus_dm.ewm(alpha=1/period, adjust=False).mean() / true_range['tr'].ewm(alpha=1/period, adjust=False).mean())
    dx = 100 * np.abs((plus_di - minus_di) / (plus_di + minus_di))
    data['adx'] = dx.ewm(alpha=1/period, adjust=False).mean()
    return data
 
def flexible_calculate_roc(data, period_range=(8, 12)):
    """计算变动率指标(ROC),参数范围可调整"""
    if 'close' not in data.columns:
        logging.warning("数据中缺少 'close' 列,无法计算 ROC。")
        return data
 
    period = np.random.randint(*period_range)
    data['roc'] = data['close'].pct_change(periods=period)
    return data
 
def flexible_calculate_mfi(data, period_range=(10, 15)):
    """计算资金流量指标(MFI),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns or 'close' not in data.columns or 'volume' not in data.columns:
        logging.warning("数据缺少必要列,无法计算 MFI。")
        return data
 
    period = np.random.randint(*period_range)
    typical_price = (data['high'] + data['low'] + data['close']) / 3
    money_flow = typical_price * data['volume']
    positive_flow = money_flow.where((data['close'] > data['close'].shift(1)), 0).rolling(window=period).sum()
    negative_flow = money_flow.where((data['close'] < data['close'].shift(1)), 0).rolling(window=period).sum()
    money_ratio = positive_flow / negative_flow
    data['mfi'] = 100 - (100 / (1 + money_ratio))
    return data
 
def flexible_calculate_aroon(data, period_range=(20, 30)):
    """计算阿隆指标(Aroon),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns:
        logging.warning("数据缺少必要列,无法计算 Aroon。")
        return data
 
    period = np.random.randint(*period_range)
    def aroon_calc(col):
        n = len(col)
        return 100 * pd.Series(col).rolling(window=period).apply(lambda x: np.argmax(x) if len(x) > 0 else 0) / n
 
    data['aroon_up'] = aroon_calc(data['high'])
    data['aroon_down'] = aroon_calc(data['low'])
    return data
 
def flexible_calculate_stochastic_oscillator(data, k_period_range=(10, 15), d_period_range=(3, 5)):
    """计算随机震荡指标(Stochastic Oscillator),参数范围可调整"""
    if 'high' not in data.columns or 'low' not in data.columns or 'close' not in data.columns:
        logging.warning("数据缺少必要列,无法计算 Stochastic Oscillator。")
        return data
 
    k_period = np.random.randint(*k_period_range)
    d_period = np.random.randint(*d_period_range)
    lowest_low = data['low'].rolling(window=k_period).min()
    highest_high = data['high'].rolling(window=k_period).max()
    data['%K'] = 100 * ((data['close'] - lowest_low) / (highest_high - lowest_low))
    data['%D'] = data['%K'].rolling(window=d_period).mean()
    return data
 
def run_strategy(data, ma_window_range=(20, 40), stop_loss_pct_range=(0.03, 0.07), take_profit_pct_range=(0.1, 0.2), transaction_cost=0.001):
    if 'close' not in data.columns:
        logging.warning("数据中缺少 'close' 列,无法运行策略。")
        return data
 
    # 考虑中国股市涨跌停限制为 10%
    data['daily_limit'] = data['close'].shift(1) * 1.1
    data['lower_limit'] = data['close'].shift(1) * 0.9
 
    # 随机选择参数,但记录下来以便后续分析和优化
    ma_window = np.random.randint(*ma_window_range)
    stop_loss_pct = np.random.uniform(*stop_loss_pct_range)
    take_profit_pct = np.random.uniform(*take_profit_pct_range)
 
    # 计算布林线上下轨
    if len(data) < ma_window:
        logging.warning(f"数据长度不足 {ma_window},无法计算布林线。")
        return data
 
    data['std'] = data['close'].rolling(window=ma_window).std()
    data['upper_band'] = data['close'].rolling(window=ma_window).mean() + 2 * data['std']
    data['lower_band'] = data['close'].rolling(window=ma_window).mean() - 2 * data['std']
 
    # 计算各种指标
    data = flexible_calculate_macd(data)
    data = flexible_calculate_rsi(data)
    data = flexible_calculate_bias(data)
    data = flexible_calculate_williams_r(data)
    data = flexible_calculate_kdj(data)
    data = flexible_calculate_cci(data)
    data = flexible_calculate_adx(data)
    data = flexible_calculate_roc(data)
    data = flexible_calculate_mfi(data)
    data = flexible_calculate_aroon(data)
    data = flexible_calculate_stochastic_oscillator(data)
 
    # 处理缺失值
    data = data.dropna()
 
    # 计算简单移动平均线
    data['sma'] = data['close'].rolling(window=ma_window).mean()
 
    # 初始化交易信号和持仓状态
    data['signal'] = 0
    data['position'] = 0
    data['entry_price'] = np.nan
    data['strategy_params'] = f"MA_Window={ma_window}, StopLoss={stop_loss_pct:.2f}, TakeProfit={take_profit_pct:.2f}"
 
    # 生成交易信号
    for i in range(ma_window, len(data)):
        # 判断上升趋势且多个指标同时满足,同时考虑价格未触及涨停
        if data.at[i, 'adx'] > 25 and data.at[i, 'close'] > data.at[i - 1, 'sma'] and data.at[i - 1, 'position'] <= 0:
            macd_condition = data.at[i, 'macd_diff'] > 0 and data.at[i, 'macd_diff'] > data.at[i - 1, 'macd_diff']
            rsi_condition = data.at[i, 'rsi'] < 70 and data.at[i, 'rsi'] > data.at[i - 1, 'rsi']
            bias_condition = data.at[i, 'bias'] > -5 and data.at[i, 'bias'] > data.at[i - 1, 'bias']
            williams_r_condition = data.at[i, 'williams_r'] > -20 and data.at[i, 'williams_r'] > data.at[i - 1, 'williams_r']
            kdj_condition = data.at[i, 'k'] > data.at[i, 'd'] and data.at[i, 'k'] > data.at[i - 1, 'k'] and data.at[i, 'd'] > data.at[i - 1, 'd']
            cci_condition = data.at[i, 'cci'] > -100 and data.at[i, 'cci'] > data.at[i - 1, 'cci']
            roc_condition = data.at[i, 'roc'] > 0 and data.at[i, 'roc'] > data.at[i - 1, 'roc']
            mfi_condition = data.at[i, 'mfi'] > 50 and data.at[i, 'mfi'] > data.at[i - 1, 'mfi']
            aroon_condition = data.at[i, 'aroon_up'] > data.at[i, 'aroon_down'] and data.at[i, 'aroon_up'] > data.at[i - 1, 'aroon_up'] and data.at[i, 'aroon_down'] < data.at[i - 1, 'aroon_down']
            stochastic_condition = data.at[i, '%K'] < data.at[i, '%D'] and data.at[i, '%K'] > data.at[i - 1, '%K'] and data.at[i, '%D'] > data.at[i - 1, '%D']
            if (macd_condition and rsi_condition and bias_condition and williams_r_condition and kdj_condition and cci_condition and roc_condition and mfi_condition and aroon_condition and stochastic_condition and data.at[i, 'close'] < data.at[i, 'daily_limit']):
                data.at[i, 'signal'] = 1
                data.at[i, 'position'] += 1
                data.at[i, 'entry_price'] = data.at[i, 'close']
                logging.info(f"发出买入提示:在 {data.at[i, 'date']} 可能是买入时机。参数:{data.at[i, 'strategy_params']}")
        # 判断下降趋势且多个指标同时满足,同时考虑价格未触及跌停
        elif data.at[i, 'adx'] > 25 and data.at[i, 'close'] < data.at[i - 1, 'sma'] and data.at[i - 1, 'position'] >= 0:
            macd_condition = data.at[i, 'macd_diff'] < 0 and data.at[i, 'macd_diff'] < data.at[i - 1, 'macd_diff']
            rsi_condition = data.at[i, 'rsi'] > 30 and data.at[i, 'rsi'] < data.at[i - 1, 'rsi']
            bias_condition = data.at[i, 'bias'] < 5 and data.at[i, 'bias'] < data.at[i - 1, 'bias']
            williams_r_condition = data.at[i, 'williams_r'] < -80 and data.at[i, 'williams_r'] < data.at[i - 1, 'williams_r']
            kdj_condition = data.at[i, 'k'] < data.at[i, 'd'] and data.at[i, 'k'] < data.at[i - 1, 'k'] and data.at[i, 'd'] < data.at[i - 1, 'd']
            cci_condition = data.at[i, 'cci'] < 100 and data.at[i, 'cci'] < data.at[i - 1, 'cci']
            roc_condition = data.at[i, 'roc'] < 0 and data.at[i, 'roc'] < data.at[i - 1, 'roc']
            mfi_condition = data.at[i, 'mfi'] < 50 and data.at[i, 'mfi'] < data.at[i - 1

发帖前要善用论坛搜索功能,那里可能会有你要找的答案或者已经有人发布过相同内容了,请勿重复发帖。

bohong65 发表于 2024-10-3 16:23
没有样例或报错日志看不出来。还有建议把策略部分单独剥离出来,不要混在回测框架里,方便以后模块化测试
devilpanama 发表于 2024-10-3 16:44
lizy169 发表于 2024-10-3 17:41
代码不全,只看到函数,没看到执行的逻辑,所以不好建议什么
zhu2023 发表于 2024-10-3 18:21
只靠布林带和均线就判断吗
Tianshan 发表于 2024-10-3 18:25
devilpanama 发表于 2024-10-3 16:44
没有main函数,入口呢

让程序,找不到执行的入口
dcc123qwe 发表于 2024-10-3 18:42
我把你的代码改好了,用图形界面了,我看了你的交易策略,其实问题还有不少,只能在趋势行情交易,还可以用用,震荡行情你要亏死。
moonalong8 发表于 2024-10-3 19:50
你这只是把各个指标混合到一起,并不会提高胜率,只是单纯心理安慰。不由的让我想起十几年前刚刚接触股票软件的我。
sapin 发表于 2024-10-3 20:37
Tianshan 发表于 2024-10-3 18:25
让程序,找不到执行的入口

或者说这只是更大的程序里的一个小模块,导入到别的模块里这样就不直接用了?
fishtopup 发表于 2024-10-3 21:33
不由的让我想起十几年前刚刚接触股票软件的我。
您需要登录后才可以回帖 登录 | 注册[Register]

本版积分规则

返回列表

RSS订阅|小黑屋|处罚记录|联系我们|吾爱破解 - LCG - LSG ( 京ICP备16042023号 | 京公网安备 11010502030087号 )

GMT+8, 2025-3-5 15:07

Powered by Discuz!

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表