1、申 请 I D:sanyimitian1
2、个人邮箱:401774732@qq.com
3、原创技术文章:
看雪精华帖2篇,优秀8+篇:
精华1:https://bbs.pediy.com/thread-264023.htm
精华2:https://bbs.pediy.com/thread-262004.htm
优秀贴:https://bbs.pediy.com/user-881392-1-1.htm
贴图:
目录
- [size=0.9]一、框架
- [size=0.9]二、加壳器
- [size=0.9] 2.1 打开被加壳程序
- [size=0.9] 2.2 打开`dll`文件
- [size=0.9] 2.3 新增并拷贝区段
- [size=0.9] 2.4 设置`OEP`
- [size=0.9] 2.5 加密区段
- [size=0.9] 2.6 压缩
- [size=0.9] `2.7 IAT`加密
- [size=0.9] 2.8 处理`TLS`
- [size=0.9] 2.9 修复重定位
- [size=0.9] 2.10 拷贝数据
- [size=0.9] 2.11 写入磁盘
- [size=0.9]三、壳代码
- [size=0.9] 3.1 手动获取函数地址
- [size=0.9] 3.2 密码弹窗
- [size=0.9] 3.3 解压
- [size=0.9] 3.4 解密代码
- [size=0.9] 3.5 加密`IAT`
- [size=0.9] 3.6 修复重定位
- [size=0.9] 3.7 处理`TLS`
- [size=0.9] 3.8 反调试
- [size=0.9] 3.9 跳回原`OEP`
一、框架编写一个加壳器项目、一个动态链接库项目,将动态链接库的.text、.data、.rdata区段合并为一个区段
1
2
3
4
5
6
7 |
//1. 将 DLL 设置为 Release 版本进行编译、小、内联了一些函数
//2. C\C++ -> 代码生成 -> GS安全检查 -> 禁用 (取消一些库函数的调用)
//3. C\C++ -> 所有选项 -> 运行库 -> MT (取消一些库函数的调用)
//4. 合并区段,并设置属性为可读可写可执行(0xE00000E0)
#pragma comment(linker, "/merge:.data=.text")
#pragma comment(linker, "/merge:.rdata=.text")
#pragma comment(linker, "/section:.text,RWE")
| 1.1为了方便调试,进行如下设置- 设置 .exe(加壳器) 和 .dll(stub) 文件的输出路径为同一路径项目属性 -> 常规 -> 输出目录
- 设置工作目录为刚才的输出路径项目属性 -> 调试 -> 工作目录
1.2STUB 区域代码的重定位问题
起初代码是放在了 dll 中,需要重定位的内容,是以 dll 实际加载基址设置的,现在我们将dll中的三个区段合并之后放到原程序后面了,那么涉及到重定位的问题:首先了解一下一个虚拟地址的组成:
VA = ImageBase + 区段首地址 + 区段偏移
二、加壳器2.1 打开被加壳程序在加壳器中,首先打开需要被加壳的程序,读取需要加壳的程序的PE文件到内存中
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 |
//打开、读取、判断文件
VOID Pack::OpenPeFile(LPCSTR Path) {
HANDLE hFile = CreateFile(Path, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE)
print("打开文件失败");//自己封装的判断函数
PeSize = GetFileSize(hFile, NULL);
PeBase = (DWORD)malloc(PeSize);
DWORD ReadSize = 0;
ReadFile(hFile, (LPVOID)PeBase, PeSize, &ReadSize, NULL);
if (pDosHead(PeBase)->e_magic!=0x5A4D)
print("不是有效的PE文件");
else if (pNtHead(PeBase)->Signature != 0x4550)
print("不是有效的PE文件");
CloseHandle(hFile);
}
| 新建一个动态链接库项目,作为壳代码使用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 |
#include "../pack/Share.h" // 壳代码与加壳器之间共用的结构体类型头文件
#include"../aplib/aplib.h" // 压缩库头文件
#include <Windows.h>
#pragma comment(lib, "../aplib/aplib.lib") // 压缩库
// 对 dll 的区段合并为.text区段,并设置区段属性为[读写执行]
#pragma comment(linker, "/merge:.data=.text")
#pragma comment(linker, "/merge:.rdata=.text")
#pragma comment(linker, "/section:.text,RWE")
// 去除所有导出函数和导出变量的名称粉碎
extern "C"{
__declspec(dllexport) SHARE ShareData; //导出变量,用于壳代码与加壳器之间的通讯
__declspec(dllexport) __declspec(naked) void start() //导出函数地址,将会作为新的OEP
{
_asm{
mov eax, fs:[0x30]
mov eax, [eax + 0x8] //获取当前进程gImageBase
mov gImageBase, eax
}
GetFunAdd(); //获取GetProcAddress
GetApi(); //获取API
CallShllFun(); //密码弹窗
UnCompression(ShareData); //解压
DecSection(); //解密代码段
DecIat(ShareData); //加密IAT
FixReloca(ShareData); //修复重定位
CallTls(ShareData); //处理TLS
Debugging(); //反调试
__asm
{
mov eax, gImageBase //获取当前进程gImageBase
mov ebx, ShareData.DestOEP //获取原程序的OEP
add eax,ebx
jmp eax
}
}
}
| 2.2 打开dll文件在加壳器中,打开动态链接库生成的dll文件,以便后面获取合并区段中的壳代码
1
2
3
4
5
6
7
8
9
10
11
12 |
//打开 壳代码的DLL 文件,获取基址
VOID Pack::OpenDllFile(LPCSTR Path) {
//加载模块到内存中,并且不调用DllMain
DllBase = (DWORD)LoadLibraryEx(Path, NULL, DONT_RESOLVE_DLL_REFERENCES);
//获取导出函数StartOfsset地址
StartOfsset = (DWORD)GetProcAddress((HMODULE)DllBase, "start");
if (!StartOfsset)
print("获取DLLMain的导出函数失败");
StartOfsset = StartOfsset - DllBase - (DWORD)GetSecHeadAddr(DllBase, DllSecName)->VirtualAddress;
//获取导出变量通讯结构体,加壳器需要使用到
pShareData = (SHARE*)GetProcAddress((HMODULE)DllBase, "ShareData");
}
| 2.3 新增并拷贝区段打开完dll和需要加壳的exe后,对exe的PE结构操作:新增一个区段,将dll中合并后的.text区段拷贝到新区段中
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |
//添加并拷贝一个新区段
VOID Pack::CopySection(LPCSTR DestName) {
if (strlen(DestName) > 7)
print("新区段名称太长");
//获取需要添加的区段
auto pLastSection = IMAGE_FIRST_SECTION(pNtHead(PeBase)) + (pFileHead(PeBase)->NumberOfSections - 1);
auto pNewSection = pLastSection + 1;
//获取区段头的首地址
auto SrcAddr = GetSecHeadAddr(DllBase, DllSecName);
//拷贝区段头
memcpy(pNewSection, SrcAddr, sizeof(IMAGE_SECTION_HEADER));
//修改属性
pNewSection->VirtualAddress = pLastSection->VirtualAddress +
AlignmentToSize(pLastSection->Misc.VirtualSize, pOptionHead(PeBase)->SectionAlignment);
pNewSection->PointerToRawData = pLastSection->PointerToRawData +
AlignmentToSize(pLastSection->SizeOfRawData, pOptionHead(PeBase)->FileAlignment);
// Name
memcpy(pNewSection->Name, DestName, strlen(DestName));
// NumberOfSections
pFileHead(PeBase)->NumberOfSections += 1;
// SizeOfImage大小
pOptionHead(PeBase)->SizeOfImage +=
AlignmentToSize(pNewSection->Misc.VirtualSize, pOptionHead(PeBase)->SectionAlignment);
// 从新分配空间,将新区段添加到堆空间中
PeSize = pNewSection->SizeOfRawData + pNewSection->PointerToRawData;
PeBase = (DWORD)realloc((VOID*)PeBase, PeSize);
return;
}
| AlignmentToSize函数:根据大小以及对齐粒度,获取对齐后的大小
1
2
3
4 |
//根据大小以及对齐粒度获取对齐大小
DWORD Pack::AlignmentToSize(DWORD Size, DWORD Algmt) {
return (Size / Algmt)?(((Size / Algmt) + 1)*Algmt):Algmt;
}
| 2.4 设置OEP拷贝完成之后,将程序的OEP设置为壳代码的OEP(也就是刚刚拷贝过来的区段),并且备份原程序的OEP
1
2
3
4
5
6
7 |
//设置OEP
VOID Pack::SetOep() {
//在重定位之前,保存原程序OEP
pShareData->DestOEP = pOptionHead(PeBase)->AddressOfEntryPoint;
//设置OEP为壳代码OEP
pOptionHead(PeBase)->AddressOfEntryPoint = StartOfsset + GetSecHeadAddr(PeBase,".pack")->VirtualAddress;
}
| 2.5 加密区段设置完OEP,开始对区段加密,加密的实现很简单,就是获取需要加密的区段首地址和大小,循环加密。加密算法这里就使用简单的异或。
1
2
3
4
5
6
7
8
9
10
11
12 |
//加密区段
VOID Pack::Encryption(CHAR* SectionName) {
//找到需要加密的区段
auto SectionHead = GetSecHeadAddr(PeBase, SectionName);
//加密的大小和加密起始地址
DWORD Size = SectionHead->Misc.VirtualSize;
CHAR* Address =(CHAR*)(SectionHead->PointerToRawData + PeBase);
for (size_t i = 0; i < Size; i++){
*Address ^= 0x15;
Address++;
}
}
| 2.6 压缩加密完之后,对原程序的.text区段压缩,压缩的原理如下图,此处仅压缩了.text区段
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 |
//压缩
VOID Pack::Compression()
{
int SecTextSize = GetSecHeadAddr(PeBase, ".text")->SizeOfRawData;
pShareData->SizeOfRawData = SecTextSize;
char* TextSecData = (char*)(GetSecHeadAddr(PeBase, ".text")->PointerToRawData + PeBase);
//被压缩的数据,Packed保存压缩数据的空间,WorkMem为完成压缩需要使用的空间
char* Packed = (char*)malloc(aP_max_packed_size(SecTextSize));
char* WorkMem = (char*)malloc(aP_workmem_size(SecTextSize));
//压缩后的大小
int OutSize = aPsafe_pack(TextSecData, Packed, SecTextSize, WorkMem, NULL, NULL);
//对齐后的大小
int AlignSize = OutSize % 0x200 == 0 ? OutSize : (OutSize / 0x200 + 1) * 0x200;
//新空间大小
DWORD NewFileSize = PeSize - GetSecHeadAddr(PeBase, ".text")->SizeOfRawData + AlignSize;
//申请新的空间大小 文件大小 - 区段在文件中的大小 + 压缩后的大小(不对齐)
DWORD NewFileBase = (DWORD)malloc(NewFileSize);
//TextSecData之前的数据
DWORD PreText = GetSecHeadAddr(PeBase, ".text")->PointerToRawData - 1;
//拷贝TextSecData段之前的数据
memcpy((LPVOID)NewFileBase, (LPVOID)PeBase, PreText);
//拷贝压缩部分的数据
memcpy((LPVOID)(NewFileBase + PreText + 1), Packed, OutSize);
//拷贝TextSecData段后面的数据
LPVOID DestAddr = (LPVOID)(NewFileBase + PreText + AlignSize + 1);
DWORD TextSecSize = GetSecHeadAddr(PeBase, ".text")->SizeOfRawData;
DWORD TextSecPointRaw = GetSecHeadAddr(PeBase, ".text")->PointerToRawData;
LPVOID SrcAddr = (LPVOID)(PeBase + TextSecSize + TextSecPointRaw);
DWORD LastSize = NewFileSize - PreText - AlignSize;
memcpy(DestAddr, SrcAddr, LastSize);
//free(&FileBase);
PeBase = NewFileBase;
//free((void*)NewFileBase);
NewFileBase = NULL;
// 1. 获取到目标模块的区段表
auto Sections = IMAGE_FIRST_SECTION(pNtHead(PeBase));
// 2. 使用文件头中的区段数量遍历区段表
WORD Count = pFileHead(PeBase)->NumberOfSections;
BOOL bChangeFoa = FALSE;
for (WORD i = 0; i < Count; ++i)
{
if (bChangeFoa) {
Sections.PointerToRawData = Sections.PointerToRawData - GetSecHeadAddr(PeBase, ".text")->SizeOfRawData + AlignSize;
}
// 3. .text区段之前的区段不改变,操作.text区段之后的区段
if (!memcmp(Sections.Name, ".text", 7)) {
bChangeFoa = TRUE;
}
}
pShareData->TextCompressSize = OutSize;
GetSecHeadAddr(PeBase, ".text")->SizeOfRawData = AlignSize;
pShareData->TextRVA = GetSecHeadAddr(PeBase, ".text")->VirtualAddress;
PeSize = NewFileSize;
}
| 压缩实现之后的大小变化:因为只是压缩了一个.text区段所以压缩率并不高,只是少了600KB左右
2.7 IAT加密我们先看一下程序从编译到运行之间的流程
编译:将单个的 .c 或 .cpp编译成中间文件 (.obj),在VS 下,这个过程由 cl.exe程序完成。
链接:将编译出的.obj 中间文件、系统的启动文件和用到的库文件链接成一个可执行文件 (.exe)。VS下由 link.exe程序完成
装载:将一个可执行文件映射到虚拟地址空间并执行,由操作系统完成。在装载的过程中,完了让程序正常被执行,会有下列几个步骤:- 判断是否开启重定位,如果开启了,将 PE 文件加载到指定位置,并且修复目标PE 文件的重定位。
- 遍历导入表,加载使用到的所有模块到内存,修复模块相关的信息,并根据导入表中的函数名称,填充所有的IAT地址项。
- 查看当前是否存在TLS回调函数,如果存在,则传入进程创建事件,依次调用 所有的TLS回调函数。
- 以PE文件中的AddressOfEntryPoint为起始位置,创建线程并运行。
我们的IAT加密是在壳代码中完成的,但是为了能让壳代码顺利接管到IAT表,需要在令程序在装载的时候不填充IAT表
1
2
3
4
5
6
7 |
//令壳代码接管IAT表
VOID Pack::SetIatTo0() {
// 在重定位之前设置
pShareData->ImpTableVA = pOptionHead(PeBase)->DataDirectory[1].VirtualAddress;//备份原导入表RVA
pOptionHead(PeBase)->DataDirectory[1].VirtualAddress = 0; //清零
pOptionHead(PeBase)->DataDirectory[12].VirtualAddress = 0; //第[12]项也是导入表,也需要清零
}
| 2.8 处理TLS一个程序如果有TLS会在程序运行之前就调用TLS里面的回调函数,由于我们运行的是加壳后的程序,原程序的代码段已经被加密,直接运行TLS肯定不行,我们需要手动处理TLS,在原程序中备份TLS以及TLS的回调函数数组,然后在壳代码中,程序解密后运行前,自己手动遍历TLS回调函数,手动循环调用一次,然后在恢复TLS。
1
2
3
4
5
6
7
8
9
10
11
12 |
//备份TLS后清空TLS
VOID Pack::SetTls() {
pShareData->TlsVirtualAddress = pOptionHead(PeBase)->DataDirectory[9].VirtualAddress;
//如果存在TLS表
if (pShareData->TlsVirtualAddress) {
pOptionHead(PeBase)->DataDirectory[9].VirtualAddress = 0;
DWORD TlsFoa = RvaToOffset(PeBase, pShareData->TlsVirtualAddress);
auto TlsTable = (PIMAGE_TLS_DIRECTORY)(TlsFoa + PeBase);
//备份TLS的回调函数
pShareData->TlsCallBackTableVa = TlsTable->AddressOfCallBacks;
}
}
| 2.9 修复重定位重定位是一个比较麻烦的问题,还需要考虑到随机基址的问题。
首先,dll合并后的.text区段由于ImageBase和区段RVA改变了,需要先修复dll的.text区段的重定位项
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 |
// 对壳代码进行重定位
VOID Pack::FixReloc(){
DWORD OldImageBase = pOptionHead(DllBase)->ImageBase;
DWORD NewImageBase = pOptionHead(PeBase)->ImageBase;
DWORD OldSectionBase = GetSecHeadAddr(DllBase, ".text")->VirtualAddress;
DWORD NewSectionBase = GetSecHeadAddr(PeBase, ".pack")->VirtualAddress;
auto Relocs = (PIMAGE_BASE_RELOCATION)(DllBase + pOptionHead(DllBase)->DataDirectory[5].VirtualAddress);
// 遍历重定位表
while (Relocs->SizeOfBlock) {
DWORD OldProtect = 0;
VirtualProtect((LPVOID)(DllBase + Relocs->VirtualAddress), 0x1000, PAGE_READWRITE, &OldProtect);
TypeOffset* items = (TypeOffset*)(Relocs + 1);
//重定位项数量
int count = (Relocs->SizeOfBlock - 8) / 2;
//遍历并修复重定位项
for (int i = 0; i < count; ++i) {
if (items.Type == 3) {
DWORD* item = (DWORD*)(pOptionHead(DllBase)->ImageBase + Relocs->VirtualAddress + items.Offset);
*item = *item - OldImageBase - OldSectionBase + NewImageBase + NewSectionBase;
}
}
VirtualProtect((LPVOID)(DllBase + Relocs->VirtualAddress), 0x1000, OldProtect, &OldProtect);
Relocs = (PIMAGE_BASE_RELOCATION)(Relocs->SizeOfBlock + (DWORD)Relocs);
}
// 关闭源程序的随机基址
//pOptionHead(PeBase)->DllCharacteristics &= ~IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE;
}
| 随机基址的问题:由于有了随机基址,即使我们上面修复了重定位项,程序也不能正常运行,我们可以替换原程序的重定位表,让原程序帮我们修复壳代码的重定位项,当程序装载之后,壳代码的重定位项已经修复为随机基址之后的地址了,我们就可以在壳代码中修复原程序的重定位表,壳代码修复原程序的重定位项需要使用到原程序的重定位表,因此,还需要备份一下原程序的重定位表地址。
那如何替换原程序的重定位表呢?新建一个区段,这个区段用于存放DLL的重定位表,然后备份原程序的重定位表后,将原程序的重定位表指向新建的区段。完成重定位表的替换。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 |
//备份并替换重定位表
VOID Pack::SetReloc() {
//1.备份原程序的重定位表地址,将原程序的重定位写入到通讯结构体中,将dll的重定位表替换到原程序的重定位表
//2.在壳代码中,系统会帮我们修复壳代码的重定位,待原程序解密之后,在壳代码中获取通讯结构体,获取原程序重定位表,修复原程序重定位
DWORD DllImageBase = pOptionHead(DllBase)->ImageBase;
//备份原重定位表
pShareData->dwRelocRva = pOptionHead(PeBase)->DataDirectory[5].VirtualAddress;
pShareData->dwRelocSize = pOptionHead(PeBase)->DataDirectory[5].Size;
pShareData->OldImageBase = pOptionHead(PeBase)->ImageBase;
//Dll重定位表
auto DllBaseReloc = (PIMAGE_BASE_RELOCATION)(pOptionHead(DllBase)->DataDirectory[5].VirtualAddress + DllImageBase);
DWORD DllRelocaSize = pOptionHead(DllBase)->DataDirectory[5].Size;
//新增区段
AddSection(".mysec", DllRelocaSize);
auto NewSecHed = GetSecHeadAddr(PeBase, ".mysec");
auto OldSecHed = GetSecHeadAddr(DllBase, ".text");
auto PackSecHed = GetSecHeadAddr(PeBase, ".pack");
auto NewRelocaSection = (PIMAGE_BASE_RELOCATION)(NewSecHed->PointerToRawData + PeBase);
DWORD OldSectionAddr = (DWORD)(OldSecHed->VirtualAddress + DllBase);
memcpy((DWORD*)NewRelocaSection, (DWORD*)(DllBaseReloc), DllRelocaSize);
while (NewRelocaSection->VirtualAddress){
//新的内存页起始RVA = 原RVA - 原段基址 +.pack段基址
NewRelocaSection->VirtualAddress = NewRelocaSection->VirtualAddress - (OldSectionAddr -DllBase) + PackSecHed->VirtualAddress;
NewRelocaSection = (PIMAGE_BASE_RELOCATION)(NewRelocaSection->SizeOfBlock + (DWORD)NewRelocaSection);
}
//替换原程序重定位表
pOptionHead(PeBase)->DataDirectory[5].VirtualAddress = NewSecHed->VirtualAddress;
pOptionHead(PeBase)->DataDirectory[5].Size = DllRelocaSize;
}
| 添加区段的函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 |
//添加一个新区段
VOID Pack::AddSection(LPCSTR Name, DWORD Size) {
PIMAGE_DOS_HEADER pDos = pDosHead(PeBase);
PIMAGE_NT_HEADERS pNt = pNtHead(PeBase);
//获取需要添加的区段
PIMAGE_SECTION_HEADER pLastSection = (IMAGE_FIRST_SECTION(pNt)) + (pNt->FileHeader.NumberOfSections - 1);
PIMAGE_SECTION_HEADER pNewSection = pLastSection + 1;
//Name
memcpy(pNewSection->Name, Name, 7);
//VirtualSize
pNewSection->Misc.VirtualSize = AlignmentToSize(Size, pNt->OptionalHeader.SectionAlignment);
//VirtualAddress = 最后一个区段的 VirtualAddress +最后一个区段内存大小
pNewSection->VirtualAddress = pLastSection->VirtualAddress +
AlignmentToSize(pLastSection->Misc.VirtualSize, pNt->OptionalHeader.SectionAlignment);
//SizeOfRawData
pNewSection->SizeOfRawData = AlignmentToSize(Size, pNt->OptionalHeader.FileAlignment);
//PointerToRawData = 最后一个区段的 PointerToRawData + 最后一个区段文件大小
pNewSection->PointerToRawData = pLastSection->PointerToRawData +
AlignmentToSize(pLastSection->SizeOfRawData, pNt->OptionalHeader.FileAlignment);
//Characteristics
pNewSection->Characteristics = 0xE00000E0;
//NumberOfSections
pNt->FileHeader.NumberOfSections += 1;
//SizeOfImage大小
pNt->OptionalHeader.SizeOfImage += AlignmentToSize(pNewSection->Misc.VirtualSize, pNt->OptionalHeader.SectionAlignment);
//从新分配空间,将新区段添加到堆空间中
PeSize = pNewSection->SizeOfRawData + pNewSection->PointerToRawData;
PeBase = (DWORD)realloc((VOID*)PeBase, PeSize);
pNewSection = GetSecHeadAddr(PeBase, Name);
memset((DWORD*)(pNewSection->PointerToRawData + PeBase), 0, pNewSection->SizeOfRawData);
return;
}
| 2.10 拷贝数据拷贝dll的.text区段到被加壳程序的.pack区段
1
2
3
4
5
6
7
8
9 |
//拷贝区段数据
VOID Pack::CopySecData(CHAR* DestName) {
//.text的地址
CHAR* Src = (CHAR*)(GetSecHeadAddr(DllBase, ".text")->VirtualAddress+DllBase);
//.pack的地址
CHAR* Dest = (CHAR*)(GetSecHeadAddr(PeBase, DestName)->PointerToRawData+PeBase);
memcpy(Dest, Src, GetSecHeadAddr(DllBase, ".text")->Misc.VirtualSize);
return;
}
| 2.11 写入磁盘
1
2
3
4
5
6
7
8
9
10
11 |
//将新文件写入磁盘
VOID Pack::WriteToFile(LPCSTR Path) {
HANDLE hFile = CreateFile(Path, GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
DWORD WriteSize = 0;
DWORD Ret = WriteFile(hFile, (LPVOID)PeBase, PeSize, &WriteSize, NULL);
if (!Ret)
print("写入文件失败");
CloseHandle(hFile);
return;
}
| 三、壳代码壳代码其实就是动态链接库中合并后的.text区段,在2.1中有提到过
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 |
#include "../pack/Share.h" // 壳代码与加壳器之间共用的结构体类型头文件
#include"../aplib/aplib.h" // 压缩库头文件
#include <Windows.h>
#pragma comment(lib, "../aplib/aplib.lib") // 压缩库
// 对 dll 的区段合并为.text区段,并设置区段属性为[读写执行]
#pragma comment(linker, "/merge:.data=.text")
#pragma comment(linker, "/merge:.rdata=.text")
#pragma comment(linker, "/section:.text,RWE")
// 去除所有导出函数和导出变量的名称粉碎
extern "C"{
__declspec(dllexport) SHARE ShareData; //导出变量,用于壳代码与加壳器之间的通讯
__declspec(dllexport) __declspec(naked) void start() //导出函数地址,将会作为新的OEP
{
_asm{
mov eax, fs:[0x30]
mov eax, [eax + 0x8] //获取当前进程gImageBase
mov gImageBase, eax
}
GetFunAdd(); //获取GetProcAddress
GetApi(); //获取API
CallShllFun(); //密码弹窗
UnCompression(ShareData); //解压
DecSection(); //解密代码段
DecIat(ShareData); //加密IAT
FixReloca(ShareData); //修复重定位
CallTls(ShareData); //处理TLS
Debugging(); //反调试
__asm
{
mov eax, gImageBase //获取当前进程gImageBase
mov ebx, ShareData.DestOEP //获取原程序的OEP
add eax,ebx
jmp eax
}
}
}
| 其实也是和加壳器是一一对应的,理解了加壳器的代码,壳代码也就好理解了3.1 手动获取函数地址由于壳代码在运行的时候,原程序还没有运行起来,并且我们对IAT进行了加密,因此,在壳代码中不能直接调用函数,需要手动获取函数地址。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 |
//定义GetProcAddress函数指针
typedef FARPROC(WINAPI* MYGetProcAddress)(HMODULE hModule, LPCSTR lpProcName);
MYGetProcAddress MyGetProcAddress =0;
void GetFunAdd() {
DWORD Ent;
DWORD Eot;
DWORD Eat;
CHAR Buff[] = { 'G','e','t','P','r','o','c','A','d','d','r' ,'e','s','s','\0' };
__asm
{
pushad
mov eax,fs:[0x30]
mov eax,[eax+0xc]
mov eax,[eax+0x1c] //第一个模块
mov eax,[eax] //kernel模块
mov eax,[eax+0x8] //kernel基址
mov gKernelBase,eax
mov edx,[eax+0x3c]
add edx,eax
mov edx,[edx+0x78]
add edx,eax //导出表
mov ebx,[edx+0x1c]
add ebx,eax
mov Eat,ebx //地址表
mov ebx,[edx+0x20]
add ebx,eax
mov Ent,ebx //名称表
mov ebx,[edx+0x24]
add ebx,eax
mov Eot,ebx //序号表
xor ebx, ebx
jmp tag_FristCmp
tag_CmpFunNameLoop:
inc ebx
tag_FristCmp:
mov esi, Ent
mov esi, [ebx * 0x4 + esi] //遍历名称表
lea esi, [esi + eax] //函数名称VA
lea edi, dword ptr Buff //GetProAddress字符串地址
mov ecx, 0xE //GetProAddress长度
cld //清除方向位
repe cmpsb //循环比较字符
jne tag_cmpFunNameLoop
mov esi,Eot
xor edi, edi
mov di, [ebx * 2 + esi] //序号
//使用序号在地址表中找到函数地址
mov edx, Eat
mov esi, [edx + edi * 4] //得到函数地址RVA
lea eax, [esi + eax] //函数地址
mov MyGetProcAddress,eax //保存函数地址到函数指针
popad
}
}
| 一旦有了GetProcAddress这个函数和Kerler32基址,我们就可以调用所有函数了,获取到LoadLibraryExA之后,就可以加载其他模块,获取其他模块的函数了。(因为不管是Kernel32还是KernelBase都存在这个导出函数,所以不使用LoadLibraryA)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 |
void GetApi() {
MyLoadLibraryExA = (MYLoadLibraryExA)MyGetProcAddress(gKernelBase, "LoadLibraryExA");
MyVirtualProtect = (MYVirtualProtect)MyGetProcAddress(gKernelBase, "VirtualProtect");
gUser32Base = MyLoadLibraryExA("User32.dll", NULL, NULL);
MyMessageBoxA = (MYMessageBoxA) MyGetProcAddress(gUser32Base, "MessageBoxA");
MyVirtualAlloc = (MYVirtualAlloc)MyGetProcAddress(gKernelBase, "VirtualAlloc");
HMODULE hVcruntime = MyLoadLibraryExA("vcruntime140.dll", NULL, NULL);
Myatexit = (MYatexit)MyGetProcAddress(hVcruntime, "atexit");
Mymemcpy = (MYmemcpy)MyGetProcAddress(hVcruntime, "memcpy");
MyRegisterClassA = (MYRegisterClassA)MyGetProcAddress(gUser32Base, "RegisterClassA");
MyCreateWindowExA = (MYCreateWindowExA)MyGetProcAddress(gUser32Base, "CreateWindowExA");
MyGetModuleHandleA = (MYGetModuleHandleA)MyGetProcAddress(gKernelBase, "GetModuleHandleA");
MyShowWindow = (MYShowWindow)MyGetProcAddress(gUser32Base, "ShowWindow");
MyUpdateWindow = (MYUpdateWindow)MyGetProcAddress(gUser32Base, "UpdateWindow");
MyGetMessageA = (MYGetMessageA)MyGetProcAddress(gUser32Base, "GetMessageA");
MyTranslateMessage = (MYTranslateMessage)MyGetProcAddress(gUser32Base, "TranslateMessage");
MyDispatchMessageA = (MYDispatchMessageA)MyGetProcAddress(gUser32Base, "DispatchMessageA");
MyDefWindowProcA = (MYDefWindowProcA)MyGetProcAddress(gUser32Base, "DefWindowProcA");
MyPostQuitMessage = (MYPostQuitMessage)MyGetProcAddress(gUser32Base, "PostQuitMessage");
MyGetClientRect = (MYGetClientRect)MyGetProcAddress(gUser32Base, "GetClientRect");
MyGetWindowTextA = (MYGetWindowTextA)MyGetProcAddress(gUser32Base, "GetWindowTextA");
MyGetDlgItem = (MYGetDlgItem)MyGetProcAddress(gUser32Base, "GetDlgItem");
Mymemcmp = (MYmemcmp)MyGetProcAddress(hVcruntime, "memcmp");
MyExitProcess = (MYExitProcess)MyGetProcAddress(gKernelBase, "ExitProcess");
MySendMessageA = (MYSendMessageA)MyGetProcAddress(gUser32Base, "SendMessageA");
MyCreateThread = (MYCreateThread)MyGetProcAddress(gKernelBase, "CreateThread");
MyGetThreadContext = (MYGetThreadContext)MyGetProcAddress(gKernelBase, "GetThreadContext");
MyGetCurrentThread = (MYGetCurrentThread)MyGetProcAddress(gKernelBase, "GetCurrentThread");
MyTerminateThread = (MYTerminateThread)MyGetProcAddress(gKernelBase, "TerminateThread");
HMODULE hKernel32 = MyLoadLibraryExA("Kernel32.dll", NULL, NULL);
HMODULE hNtdll = MyLoadLibraryExA("ntdll.dll", NULL, NULL);
MYCreateToolhelp32Snapshot MyCreateToolhelp32Snapshot = (MYCreateToolhelp32Snapshot)MyGetProcAddress(hKernel32, "CreateToolhelp32Snapshot");
MyThread32First = (MYThread32First)MyGetProcAddress(hKernel32, "Thread32First");
MyThread32Next = (MYThread32Next)MyGetProcAddress(hKernel32, "Thread32Next");
MyOpenThread = (MYOpenThread)MyGetProcAddress(hKernel32, "OpenThread");
MyNtQueryInformationThread = (MYNtQueryInformationThread)MyGetProcAddress(hNtdll, "NtQueryInformationThread");
MyIsDebuggerPresent = (MYIsDebuggerPresent)MyGetProcAddress(hKernel32, "IsDebuggerPresent");
}
| 3.2 密码弹窗此处为壳子添加了一个密码弹框,需要输入正确的密码后才能运行壳代码,其实也并没什么作用,就是手动获取API调用了SDK的函数,创建窗口以及消息处理的函数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 |
//密码弹框
void CallShllFun() {
WNDCLASS wc = { 0 };
HMODULE hInstance = MyGetModuleHandleA(NULL);
wc.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS;//类风格
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;//实例句柄,代表此程序
wc.hIcon = 0;
wc.hCursor = 0;
wc.hbrBackground = 0;//BRUSH)GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = 0;//菜单
wc.lpszClassName = ("加密壳");
MyRegisterClassA(&wc);
gParentWnd = MyCreateWindowExA(
0,
"加密壳",//类名
"C++写的壳",//窗口名
WS_OVERLAPPEDWINDOW,//重叠窗口的风格 重要的参数----窗口风格
100, 200, 300, 130, //位置和大小
NULL, //父窗口句柄
NULL, //菜单句柄,没有菜单
hInstance, //实例句柄
NULL //附加信息
);
//显示、更新窗口
MyShowWindow(gParentWnd, SW_SHOW);
MyUpdateWindow(gParentWnd);
MSG msg = { 0 };
while (MyGetMessageA(&msg, 0, 0, 0)){
MyTranslateMessage(&msg);
MyDispatchMessageA(&msg);
}
return ;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 |
//回调函数
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
CHAR Buff[0x11] = {0};
HWND h1000 = 0;
DWORD Len = 0;
switch (message)
{
case WM_CREATE:
MyCreateWindowExA(WS_EX_CLIENTEDGE, TEXT("EDIT"), NULL, WS_CHILD | WS_VISIBLE | WS_BORDER, 10, 10, 200, 30, hWnd, (HMENU)0x1000, NULL, NULL);
MyCreateWindowExA(WS_EX_CLIENTEDGE, TEXT("BUTTON"), TEXT("验证密码"), WS_CHILD | WS_VISIBLE, 10, 40, 80, 30, hWnd, (HMENU)0x1001, NULL, NULL);
MyCreateWindowExA(WS_EX_CLIENTEDGE, TEXT("BUTTON"), TEXT("取消启动"), WS_CHILD | WS_VISIBLE, 100, 40, 80, 30, hWnd, (HMENU)0x1002, NULL, NULL);
}
if (hWnd == gParentWnd)
{
switch (message)
{
case WM_CLOSE:
MyPostQuitMessage(0);
if (lParam != 100)
{
MyExitProcess(0);
}
break;
case WM_COMMAND:
{
int nId = LOWORD(wParam);
switch (nId)
{
case 0x1001:
h1000 = MyGetDlgItem(gParentWnd, 0x1000);
Len = MyGetWindowTextA(h1000, Buff, 0x10);
if (Len ==0)
{
MyMessageBoxA(0, TEXT("密码不能为空"), TEXT("提示"), 0);
}
else if (!Mymemcmp("1234", Buff, Len)) {
MyMessageBoxA(0, TEXT("密码正确"), TEXT("提示"), 0);
MySendMessageA(gParentWnd, WM_CLOSE, 0, 100);
}
else {
MyMessageBoxA(0, TEXT("密码错误"), TEXT("错误"), 0);
}
break;
case 0x1002:
MyExitProcess(0);
break;
default:
break;
}
}
}
}
return MyDefWindowProcA(hWnd, message, wParam, lParam);
};
| 运行加壳后的程序会弹出对话框:
3.3 解压在加壳器中我们对原程序进行了压缩,那么在壳代码中就要对原程序解压,解压很简单,就是将压缩后的数据解压后放回该数据的原来的位置(参考2.6的图)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 |
//解压缩函数
void UnCompression(SHARE ShareData){
// 1.获取节区头首地址
auto SecTextHead = GetSecHeadAddr(gImageBase, ".text")
// 2.解压压缩区段
// 内存地址
PCHAR lpPacked = ((PCHAR)gImageBase + ShareData.TextRVA);
// 获取解压后的大小
DWORD dwPackedSize = aPsafe_get_orig_size(lpPacked);
// 申请内存
PCHAR lpBuffer = (PCHAR)MyVirtualAlloc(NULL, dwPackedSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
// 解压
aPsafe_depack(lpPacked, ShareData.TextCompressSize, lpBuffer, dwPackedSize);
//3. 还原区段,将.text区段的内容写入原地址
DWORD OldProtect = 0;
MyVirtualProtect(lpPacked, dwPackedSize, PAGE_EXECUTE_READWRITE, &OldProtect);
Mymemcpy(lpPacked, lpBuffer, SecTextHead->Misc.VirtualSize);
MyVirtualProtect(lpPacked, dwPackedSize, OldProtect, &OldProtect);
}
| 3.4 解密代码与加壳器中的加密同理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 |
//解密代码
void DecSection() {
DWORD OldProtect;
//获取.text区段
auto SectionHead = GetSecHeadAddr(gImageBase, ".text");
DWORD Size = SectionHead->Misc.VirtualSize;
CHAR* Address = (CHAR*)(SectionHead->VirtualAddress + gImageBase);
MyVirtualProtect(Address, Size, PAGE_EXECUTE_READWRITE, &OldProtect);
//循环解密
while (Size) {
*Address = *Address ^ 0x15;
Address++;
Size--;
}
MyVirtualProtect(Address, Size, OldProtect, &OldProtect);
}
| 3.5 加密IAT在加壳器中,我们对导出表进行了清零操作,目的就是为了不让系统去修复导入表,而令我们的壳代码来修复导入表并加密IAT。而加密IAT的原理如下:
就是为每一个IAT都申请一个堆空间,然后在堆空间中填入解密IAT的代码以及加密后的IAT地址,将原来的IAT替换为堆空间的地址,这样,只要程序使用到IAT,就会执行堆空间的代码,动态解密IAT。下面的图片是为了便于理解画的简化版,并没有加密IAT。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 |
//修复并加密IAT
void DecIat(SHARE ShareData) {
auto ImportTable = (PIMAGE_IMPORT_DESCRIPTOR)(gImageBase + ShareData.ImpTableVA);
while (ImportTable->Name)
{
//获取DLL名称
CHAR* Name = (CHAR*)(ImportTable->Name+gImageBase);
HMODULE Module = MyLoadLibraryExA(Name, NULL, NULL);
auto Iat = (int*)(ImportTable->FirstThunk + gImageBase);
for (size_t i = 0; Iat!=0; i++)
{
DWORD FunAddr = 0;
DWORD OldProtect;
BYTE* DecCode = (BYTE*)MyVirtualAlloc(0, 0x50, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
//解密代码
BYTE OpCode[] = {
0xE8, 0x01, 0x00, 0x00, 0x00, 0xE8, 0x58, 0x90, 0xB8,
0xA4, 0xA3, 0xA2, 0xA1, //加密
0xEB, 0x04, 0xE8, 0xBF, 0x78, 0xCC, 0x35, 0x59, 0x10, 0x40,
0x00, 0xEB, 0x01, 0xE9, 0x50, 0xEB, 0x02, 0x61, 0xE8, 0x90,
0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0xEB, 0x05, 0xE8, 0x5B,
0xC3, 0xE8, 0x88, 0x90, 0xC3, 0xE8, 0x72, 0x6B, 0x77, 0x88
};
MyVirtualProtect(&Iat, 0x50, PAGE_EXECUTE_READWRITE, &OldProtect);
//最高位为1,序号导入
if ((DWORD)Iat & 0x80000000)
FunAddr = (DWORD)MyGetProcAddress(Module, (LPCSTR)(Iat & 0xffff));
else{
auto AddressOfData = (PIMAGE_IMPORT_BY_NAME)(Iat + gImageBase);
FunAddr = (DWORD)MyGetProcAddress(Module, AddressOfData->Name);//异或前77216210
}
//将加密后的函数地址写入堆空间的解密代码
FunAddr ^= 0x00401059;
OpCode[9] = FunAddr;
OpCode[10] = FunAddr >> 0x8;
OpCode[11] = FunAddr >> 0x10;
OpCode[12] = FunAddr >> 0x18;
Mymemcpy(DecCode, OpCode, 0x50);
Iat = (int)DecCode;
MyVirtualProtect(&Iat, 0x50, OldProtect, &OldProtect);
}
ImportTable++;
}
}
| 3.6 修复重定位由于加壳器中的设置,程序装载的时候,系统帮我们修复了壳代码的重定位,但是原程序的重定位并没有修复,需要我们自己手动修复
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |
//修复重定位
void FixReloca(SHARE ShareData) {
auto Relocs = (PIMAGE_BASE_RELOCATION)(ShareData.dwRelocRva + gImageBase);
DWORD OldProtect = 0;
while (Relocs->VirtualAddress)
{
DWORD OldProtect = 0;
MyVirtualProtect((LPVOID)(gImageBase + Relocs->VirtualAddress), 0x1000, PAGE_READWRITE, &OldProtect);
TypeOffset* items = (TypeOffset*)(Relocs + 1);
//遍历重定位项
int count = (Relocs->SizeOfBlock - 8) / 2;
for (int i = 0; i < count; ++i)
{
if (items.Type == 3)
{
DWORD Temp = 0;
// 计算出每一个需要重定位的数据所在的地址
DWORD* item = (DWORD*)(gImageBase + Relocs->VirtualAddress + items.Offset);
// 这里操作的是需要重定位的数据,通常是代码段(不可写)
*item = *item + gImageBase - ShareData.OldImageBase;
}
}
MyVirtualProtect((LPVOID)(gImageBase + Relocs->VirtualAddress), 0x1000, OldProtect, &OldProtect);
// 下一个重定位块
Relocs = (PIMAGE_BASE_RELOCATION)(Relocs->SizeOfBlock + (DWORD)Relocs);
}
}
| 3.7 处理TLS这里处理的TLS并不是完美处理的。但是也能实现TLS的处理,就是循环调用TLS的回调函数,将数据目录表的TLS恢复。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 |
//手动调用Tls
void CallTls(SHARE ShareData) {
//如果存在TLS表
if (ShareData.TlsVirtualAddress)
{
DWORD OldProtect = 0;
MyVirtualProtect(&(pOptionHead(gImageBase)->DataDirectory[9].VirtualAddress), 0x1000, PAGE_EXECUTE_READWRITE, &OldProtect);
//恢复Tls数据
pOptionHead(gImageBase)->DataDirectory[9].VirtualAddress = ShareData.TlsVirtualAddress;
MyVirtualProtect(&(pOptionHead(gImageBase)->DataDirectory[9].VirtualAddress), 0x1000, OldProtect, &OldProtect);
auto TlsTable = (PIMAGE_TLS_DIRECTORY)(pOptionHead(gImageBase)->DataDirectory[9].VirtualAddress + gImageBase);
//手动调用TLS回调函数
auto CallBackTable = (PIMAGE_TLS_CALLBACK*)(ShareData.TlsCallBackTableVa - ShareData.OldImageBase + gImageBase);
while (*CallBackTable)
{
(*CallBackTable)((PVOID)gImageBase, DLL_PROCESS_ATTACH, NULL);
CallBackTable++;
}
}
}
| 3.8 反调试反调试有很多很多种方法,这里就是简单的意思一下。遍历所有线程的TEB+0xF24的反调试方法目前还有BUG,暂时没有完成实现。若有大佬能指点一二,感激不尽~
1
2
3
4
5
6
7
8 |
//反调试
void Debugging() {
gThread = MyCreateThread(NULL, NULL, ThreadProc1,NULL, 0, NULL);
//gThread = MyCreateThread(NULL, NULL, ThreadProc2, NULL, 0, NULL);//遍历所有线程的TEB+0xF24
if (MyIsDebuggerPresent())
MyMessageBoxA(0,"当前处于[被]调试状态\n",0,0);
CheckNtGlobalFlag();
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |
//反调试回调函数----硬件断点
DWORD WINAPI ThreadProc1(_In_ LPVOID lpParameter) {
while (true){
CONTEXT ConText;
DWORD Temp = CONTEXT_DEBUG_REGISTERS;
Mymemcpy(&ConText, &Temp, sizeof(CONTEXT));
//获取调试寄存器
MyGetThreadContext(MyGetCurrentThread(), &ConText);
//判断调试寄存器
if (ConText.Dr0 || ConText.Dr1 || ConText.Dr2 || ConText.Dr3)
{
MyMessageBoxA(0, "检测到硬件断点", 0, 0);
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11 |
//反调试之 PEB+0x68
void CheckNtGlobalFlag() {
int NtGlobalFlag = 0;
__asm {
mov eax, dword ptr fs : [0x30]// 通过 TEB 偏移为 0x30 找到 PEB 结构
mov eax, dword ptr[eax + 0x68]// 通过 PEB 偏移为 0x68 的地方找到 NtGlobalFlag
mov NtGlobalFlag, eax // 如果当前的进程被调试,保存的就是 0x70
}
if(NtGlobalFlag==0x70)
MyMessageBoxA(0,"PEB+0x68==0x70,当前被调试\n",0,0);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76 |
//反调试回调函数---遍历所有线程的TEB+0xF24使用到的结构体
typedef struct tagTHREADENTRY32
{
DWORD dwSize;
DWORD cntUsage;
DWORD th32ThreadID; // this thread
DWORD th32OwnerProcessID; // Process this thread is associated with
LONG tpBasePri;
LONG tpDeltaPri;
DWORD dwFlags;
} THREADENTRY32;
typedef THREADENTRY32 * PTHREADENTRY32;
typedef THREADENTRY32 * LPTHREADENTRY32;
typedef struct _CLIENT_ID {
DWORD UniqueProcess;
DWORD UniqueThread;
} CLIENT_ID;
typedef CLIENT_ID *PCLIENT_ID;
typedef enum MY_THREAD_INFORMATION_CLASS {
ThreadBasicInformation,
ThreadTimes,
ThreadPriority,
ThreadBasePriority,
ThreadAffinityMask,
ThreadImpersonationToken,
ThreadDescriptorTableEntry,
ThreadEnableAlignmentFaultFixup,
ThreadEventPair,
ThreadQuerySetWin32StartAddress,
ThreadZeroTlsCell,
ThreadPerformanceCount,
ThreadAmILastThread,
ThreadIdealProcessor,
ThreadPriorityBoost,
ThreadSetTlsArrayAddress,
ThreadIsIoPending,
ThreadHideFromDebugger
} MYTHREAD_INFORMATION_CLASS, *PMYTHREAD_INFORMATION_CLASS;
typedef ULONG KPRIORITY;
typedef struct _THREAD_BASIC_INFORMATION {
NTSTATUS ExitStatus;
PVOID TebBaseAddress;
CLIENT_ID ClientId;
KAFFINITY AffinityMask;
KPRIORITY Priority;
KPRIORITY BasePriority;
} THREAD_BASIC_INFORMATION, *PTHREAD_BASIC_INFORMATION;
//遍历所有线程的TEB+0xF24的回调函数
DWORD WINAPI ThreadProc2(_In_ LPVOID lpParameter) {
while (true)
{
THREADENTRY32 entryThread ;
DWORD Temp = 28;
Mymemcpy(&entryThread, &Temp, sizeof(THREADENTRY32));
//线程快照
HANDLE hSnapshot = MyCreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);
if (hSnapshot == INVALID_HANDLE_VALUE)
return 0;
if (!MyThread32First(hSnapshot, &entryThread))
return 0;
//遍历线程快照
do{
DWORD ThreadId = entryThread.th32OwnerProcessID;
HANDLE hThread = MyOpenThread(THREAD_ALL_ACCESS, NULL, ThreadId);
THREAD_BASIC_INFORMATION threadBasicInfo;
//查询TEB地址
LONG status = MyNtQueryInformationThread(hThread, ThreadBasicInformation, &threadBasicInfo, sizeof(threadBasicInfo), NULL);
DWORD* DbgSsReserved = (DWORD*)((DWORD)(threadBasicInfo.TebBaseAddress) + 0xF20);
if (*(DbgSsReserved + 1))
MyMessageBoxA(0, "线程TEB+0xF24不为空,该线程正在调试程序", 0, 0);
} while (MyThread32Next(hSnapshot, &entryThread));
}
}
| 3.9 跳回原OEP原程序的解压、解密、IAT加密都已经操作完成了,跳回原程序执行。
1
2
3
4
5
6
7 |
__asm
{
mov eax, gImageBase //获取当前进程gImageBase
mov ebx, ShareData.DestOEP
add eax,ebx
jmp eax
}
| 关于混淆和花指令在这里并没有做太深入的探究。
最后,非常感谢15PB万老师的课上讲解、以及顿老师的课后辅导~ |