吾爱破解 - 52pojie.cn

 找回密码
 注册[Register]

QQ登录

只需一步,快速开始

查看: 4633|回复: 133
收起左侧

[Python 转载] 【Python】模拟预测2022卡塔尔世界杯结果

  [复制链接]
cococola 发表于 2022-11-25 22:00
一、前言


在逛github的时候看到一个大佬发布了模拟2022世界杯的程序,在我试验了以后发现最终模拟的结果是巴西会夺冠。
这应该符合很多人的想法猜测吧,哈哈哈哈。
声明:本贴仅供学习交流使用,如存在侵权行为请告知我立即删帖。
github原作者【QuarterTime】 --反正我是在他那里找到的,至于他是不是原作者我也就不清楚了。

如有违规,请吧主删帖,不要留情。


二、代码测试截图

1.png 2.png



三、程序代码
本程序使用的配套数据我已经打包好放在了最后面,代码由两部分构成,先上第一部分保存数据的代码
[Python] 纯文本查看 复制代码
# -*- coding:utf-8 -*-
# Wan Jiongming @Copyright 2022

import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont

with open("country_name.txt", "r", encoding="utf-8") as f:
    info = f.readlines()
    info = list(map(lambda x:x.strip(), info))

English_name = info[:32]
Chinese_name = info[32:]

country_name = {}

for each in zip(English_name, Chinese_name):
    country_name[each[0]] = each[1]

def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=30):
    if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型
        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(img)
    # 字体的格式
    fontStyle = ImageFont.truetype(
        "simsun.ttc", textSize, encoding="utf-8")
    # 绘制文本
    draw.text(position, text, textColor, font=fontStyle)
    # 转换回OpenCV格式
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

def save_res(a, b, winner, prob, save_name):
    img = np.zeros((520, 850, 3), np.uint8)

    a_img_path = "./world_cup/" + country_name[a] + ".png"
    a_img = cv2.imdecode(np.fromfile(a_img_path, dtype = np.uint8), -1)

    a_img_h, a_img_w, _ = a_img.shape

    b_img_path = "./world_cup/" + country_name[b] + ".png"
    b_img = cv2.imdecode(np.fromfile(b_img_path, dtype = np.uint8), -1)

    b_img_h, b_img_w, _ = b_img.shape

    winner_img_path = "./world_cup/" + country_name[winner] + ".png"
    winner_img = cv2.imdecode(np.fromfile(winner_img_path, dtype = np.uint8), -1)

    winner_img_h, winner_img_w, _ = winner_img.shape

    img[10: 10 + a_img_h, 10: 10 + a_img_w] = a_img[:, :, :3]

    img[110 + a_img_h: 110 + a_img_h + b_img_h, 10: 10 + b_img_w] = b_img[:,:,:3]


    img = cv2AddChineseText(img, country_name[a] + "(" + a + ")", (10, 20 + a_img_h),(255, 255, 255), 30)

    img = cv2AddChineseText(img, country_name[b] + "(" + b + ")", (10, 20 + 100 + a_img_h + b_img_h), (255, 255, 255), 30)

    point1 = (10 + a_img_w, 10 + (a_img_h) // 2)
    point2 = (10 + a_img_w + 100, 10 + (a_img_h) // 2)

    cv2.line(img, point1, point2, (255, 255, 255), 10)

    point3 = (10 + a_img_w, 10 + 100 + a_img_h + (b_img_h) // 2)
    point4 = (10 + b_img_w + 100, 10 + 100 + a_img_h + (b_img_h) // 2)

    cv2.line(img, point3, point4, (255, 255, 255), 10)

    cv2.line(img, point2, point4, (255, 255, 255), 10)


    point5 = (10 + a_img_w + 100, 10 + 50 + a_img_h)
    point6 = (10 + a_img_w + 300, 10 + 50 + a_img_h)
    cv2.line(img, point5, point6, (255, 255, 255), 10)

    img = cv2AddChineseText(img, "胜率:{}".format(prob), (10 + a_img_w + 100 + 20, 10 + 50 + a_img_h - 40),(255, 255, 255), 30)

    img[10 + 50 + a_img_h - winner_img_h // 2: 10 + 50 + a_img_h + winner_img_h // 2, 10 + a_img_w + 300 : 10 + a_img_w + 300 + winner_img_w] = winner_img[:,:,:3]

    img = cv2AddChineseText(img, country_name[winner] + "(" + winner + ")", (10 + a_img_w + 300, 10 + 50 + a_img_h + winner_img_h // 2 + 10), (255, 255, 255), 30)

    cv2.imwrite(save_name, img)

def save_res_draw(a, b, winner, prob, save_name):
    img = np.zeros((520, 850, 3), np.uint8)

    a_img_path = "./world_cup/" + country_name[a] + ".png"
    a_img = cv2.imdecode(np.fromfile(a_img_path, dtype = np.uint8), -1)

    a_img_h, a_img_w, _ = a_img.shape

    b_img_path = "./world_cup/" + country_name[b] + ".png"
    b_img = cv2.imdecode(np.fromfile(b_img_path, dtype = np.uint8), -1)

    b_img_h, b_img_w, _ = b_img.shape

    winner_img_path = "./world_cup/" + country_name[winner] + ".png"
    winner_img = cv2.imdecode(np.fromfile(winner_img_path, dtype = np.uint8), -1)

    winner_img_h, winner_img_w, _ = winner_img.shape

    img[10: 10 + a_img_h, 10: 10 + a_img_w] = a_img[:, :, :3]

    img[110 + a_img_h: 110 + a_img_h + b_img_h, 10: 10 + b_img_w] = b_img[:,:,:3]


    img = cv2AddChineseText(img, country_name[a] + "(" + a + ")", (10, 20 + a_img_h),(255, 255, 255), 30)

    img = cv2AddChineseText(img, country_name[b] + "(" + b + ")", (10, 20 + 100 + a_img_h + b_img_h), (255, 255, 255), 30)

    point1 = (10 + a_img_w, 10 + (a_img_h) // 2)
    point2 = (10 + a_img_w + 100, 10 + (a_img_h) // 2)

    cv2.line(img, point1, point2, (255, 255, 255), 10)

    point3 = (10 + a_img_w, 10 + 100 + a_img_h + (b_img_h) // 2)
    point4 = (10 + b_img_w + 100, 10 + 100 + a_img_h + (b_img_h) // 2)

    cv2.line(img, point3, point4, (255, 255, 255), 10)

    cv2.line(img, point2, point4, (255, 255, 255), 10)


    point5 = (10 + a_img_w + 100, 10 + 50 + a_img_h)
    point6 = (10 + a_img_w + 300, 10 + 50 + a_img_h)
    cv2.line(img, point5, point6, (255, 255, 255), 10)

    img = cv2AddChineseText(img, "胜率:{}".format(prob), (10 + a_img_w + 100 + 20, 10 + 50 + a_img_h - 40),(255, 255, 255), 30)

    # img[10 + 50 + a_img_h - winner_img_h // 2: 10 + 50 + a_img_h + winner_img_h // 2, 10 + a_img_w + 300 : 10 + a_img_w + 300 + winner_img_w] = winner_img[:,:,:3]

    # img = cv2AddChineseText(img, country_name[winner] + "(" + winner + ")", (10 + a_img_w + 300, 10 + 50 + a_img_h + winner_img_h // 2 + 10), (255, 255, 255), 30)

    cv2.imwrite(save_name, img)

if __name__ == "__main__":
    save_res_draw("Switzerland", "Cameroon", "Switzerland", 0.62, "tmp.png")


这里是第二部分代码,程序运行的主代码
[Python] 纯文本查看 复制代码
# -*- coding:utf-8 -*-
# Wan Jiongming @Copyright 2022

import numpy as np
import pandas as pd
from operator import itemgetter
from save_res import save_res, save_res_draw
import time

df = pd.read_csv("./kaggle/results.csv")
df["date"] = pd.to_datetime(df["date"])
df.dropna(inplace=True)
df = df[(df["date"] >= "2018-8-1")].reset_index(drop=True)

rank = pd.read_csv("./kaggle/fifa_ranking-2022-10-06.csv")
rank["rank_date"] = pd.to_datetime(rank["rank_date"])
rank = rank[(rank["rank_date"] >= "2018-8-1")].reset_index(drop=True)
rank["country_full"] = rank["country_full"].str.replace("IR Iran", "Iran").str.replace("Korea Republic", "South Korea").str.replace("USA", "United States")
rank = rank.set_index(['rank_date']).groupby(['country_full'], group_keys=False).resample('D').first().fillna(method='ffill').reset_index()
df_wc_ranked = df.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "home_team"], right_on=["rank_date", "country_full"]).drop(["rank_date", "country_full"], axis=1)
df_wc_ranked = df_wc_ranked.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "away_team"], right_on=["rank_date", "country_full"], suffixes=("_home", "_away")).drop(["rank_date", "country_full"], axis=1)
df = df_wc_ranked
# print(df[(df_wc_ranked.home_team == "Brazil") | (df.away_team == "Brazil")].tail(10))
def result_finder(home, away):
    if home > away:
        return pd.Series([0, 3, 0])
    if home < away:
        return pd.Series([1, 0, 3])
    else:
        return pd.Series([2, 1, 1])

results = df.apply(lambda x: result_finder(x["home_score"], x["away_score"]), axis=1)
df[["result", "home_team_points", "away_team_points"]] = results
# print(df[(df_wc_ranked.home_team == "Brazil") | (df.away_team == "Brazil")].tail(10))

import seaborn as sns
import matplotlib.pyplot as plt

# plt.figure(figsize=(15, 10))
# sns.heatmap(df[["total_points_home", "rank_home", "total_points_away", "rank_away"]].corr())
# plt.show()

df["rank_dif"] = df["rank_home"] - df["rank_away"]
df["sg"] = df["home_score"] - df["away_score"]
df["points_home_by_rank"] = df["home_team_points"]/df["rank_away"]
df["points_away_by_rank"] = df["away_team_points"]/df["rank_home"]

home_team = df[["date", "home_team", "home_score", "away_score", "rank_home", "rank_away","rank_change_home", "total_points_home", "result", "rank_dif", "points_home_by_rank", "home_team_points"]]

away_team = df[["date", "away_team", "away_score", "home_score", "rank_away", "rank_home","rank_change_away", "total_points_away", "result", "rank_dif", "points_away_by_rank", "away_team_points"]]

home_team.columns = [h.replace("home_", "").replace("_home", "").replace("away_", "suf_").replace("_away", "_suf") for h in home_team.columns]

away_team.columns = [a.replace("away_", "").replace("_away", "").replace("home_", "suf_").replace("_home", "_suf") for a in away_team.columns]

team_stats = home_team.append(away_team)#.sort_values("date")
team_stats_raw = team_stats.copy()

stats_val = []

for index, row in team_stats.iterrows():
    team = row["team"]
    date = row["date"]
    past_games = team_stats.loc[(team_stats["team"] == team) & (team_stats["date"] < date)].sort_values(by=['date'], ascending=False)
    last5 = past_games.head(5)
    
    goals = past_games["score"].mean()
    goals_l5 = last5["score"].mean()
    
    goals_suf = past_games["suf_score"].mean()
    goals_suf_l5 = last5["suf_score"].mean()
    
    rank = past_games["rank_suf"].mean()
    rank_l5 = last5["rank_suf"].mean()
    
    if len(last5) > 0:
        points = past_games["total_points"].values[0] - past_games["total_points"].values[-1]#qtd de pontos ganhos
        points_l5 = last5["total_points"].values[0] - last5["total_points"].values[-1] 
    else:
        points = 0
        points_l5 = 0
        
    gp = past_games["team_points"].mean()
    gp_l5 = last5["team_points"].mean()
    
    gp_rank = past_games["points_by_rank"].mean()
    gp_rank_l5 = last5["points_by_rank"].mean()
    
    stats_val.append([goals, goals_l5, goals_suf, goals_suf_l5, rank, rank_l5, points, points_l5, gp, gp_l5, gp_rank, gp_rank_l5])

stats_cols = ["goals_mean", "goals_mean_l5", "goals_suf_mean", "goals_suf_mean_l5", "rank_mean", "rank_mean_l5", "points_mean", "points_mean_l5", "game_points_mean", "game_points_mean_l5", "game_points_rank_mean", "game_points_rank_mean_l5"]

stats_df = pd.DataFrame(stats_val, columns=stats_cols)

full_df = pd.concat([team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False)

home_team_stats = full_df.iloc[:int(full_df.shape[0]/2),:]
away_team_stats = full_df.iloc[int(full_df.shape[0]/2):,:]


home_team_stats = home_team_stats[home_team_stats.columns[-12:]]
away_team_stats = away_team_stats[away_team_stats.columns[-12:]]

home_team_stats.columns = ['home_'+str(col) for col in home_team_stats.columns]
away_team_stats.columns = ['away_'+str(col) for col in away_team_stats.columns]

match_stats = pd.concat([home_team_stats, away_team_stats.reset_index(drop=True)], axis=1, ignore_index=False)

full_df = pd.concat([df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False)

def find_friendly(x):
    if x == "Friendly":
        return 1
    else: return 0

full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x)) 

full_df = pd.get_dummies(full_df, columns=["is_friendly"])

base_df = full_df[["date", "home_team", "away_team", "rank_home", "rank_away","home_score", "away_score","result", "rank_dif", "rank_change_home", "rank_change_away", 'home_goals_mean',
       'home_goals_mean_l5', 'home_goals_suf_mean', 'home_goals_suf_mean_l5',
       'home_rank_mean', 'home_rank_mean_l5', 'home_points_mean',
       'home_points_mean_l5', 'away_goals_mean', 'away_goals_mean_l5',
       'away_goals_suf_mean', 'away_goals_suf_mean_l5', 'away_rank_mean',
       'away_rank_mean_l5', 'away_points_mean', 'away_points_mean_l5','home_game_points_mean', 'home_game_points_mean_l5',
       'home_game_points_rank_mean', 'home_game_points_rank_mean_l5','away_game_points_mean',
       'away_game_points_mean_l5', 'away_game_points_rank_mean',
       'away_game_points_rank_mean_l5',
       'is_friendly_0', 'is_friendly_1']]

base_df_no_fg = base_df.dropna()

df = base_df_no_fg

def no_draw(x):
    if x == 2:
        return 1
    else:
        return x
    
df["target"] = df["result"].apply(lambda x: no_draw(x))

def create_db(df):
    columns = ["home_team", "away_team", "target", "rank_dif", "home_goals_mean", "home_rank_mean", "away_goals_mean", "away_rank_mean", "home_rank_mean_l5", "away_rank_mean_l5", "home_goals_suf_mean", "away_goals_suf_mean", "home_goals_mean_l5", "away_goals_mean_l5", "home_goals_suf_mean_l5", "away_goals_suf_mean_l5", "home_game_points_rank_mean", "home_game_points_rank_mean_l5", "away_game_points_rank_mean", "away_game_points_rank_mean_l5","is_friendly_0", "is_friendly_1"]
    
    base = df.loc[:, columns]
    base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"]
    base.loc[:, "goals_dif_l5"] = base["home_goals_mean_l5"] - base["away_goals_mean_l5"]
    base.loc[:, "goals_suf_dif"] = base["home_goals_suf_mean"] - base["away_goals_suf_mean"]
    base.loc[:, "goals_suf_dif_l5"] = base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"]
    base.loc[:, "goals_per_ranking_dif"] = (base["home_goals_mean"] / base["home_rank_mean"]) - (base["away_goals_mean"] / base["away_rank_mean"])
    base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"]
    base.loc[:, "dif_rank_agst_l5"] = base["home_rank_mean_l5"] - base["away_rank_mean_l5"]
    base.loc[:, "dif_points_rank"] = base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"]
    base.loc[:, "dif_points_rank_l5"] = base["home_game_points_rank_mean_l5"] - base["away_game_points_rank_mean_l5"]
    
    model_df = base[["home_team", "away_team", "target", "rank_dif", "goals_dif", "goals_dif_l5", "goals_suf_dif", "goals_suf_dif_l5", "goals_per_ranking_dif", "dif_rank_agst", "dif_rank_agst_l5", "dif_points_rank", "dif_points_rank_l5", "is_friendly_0", "is_friendly_1"]]
    return model_df

model_db = create_db(df)

X = model_db.iloc[:, 3:]
y = model_db[["target"]]


from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split, GridSearchCV

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state=1)

gb = GradientBoostingClassifier(random_state=5)

params = {"learning_rate": [0.01, 0.1, 0.5],
            "min_samples_split": [5, 10],
            "min_samples_leaf": [3, 5],
            "max_depth":[3,5,10],
            "max_features":["sqrt"],
            "n_estimators":[100, 200]
         } 

gb_cv = GridSearchCV(gb, params, cv = 3, n_jobs = -1, verbose = False)

gb_cv.fit(X_train.values, np.ravel(y_train))

gb = gb_cv.best_estimator_

params_rf = {"max_depth": [20],
                "min_samples_split": [10],
                "max_leaf_nodes": [175],
                "min_samples_leaf": [5],
                "n_estimators": [250],
                 "max_features": ["sqrt"],
                }

rf = RandomForestClassifier(random_state=1)

rf_cv = GridSearchCV(rf, params_rf, cv = 3, n_jobs = -1, verbose = False)

rf_cv.fit(X_train.values, np.ravel(y_train))

rf = rf_cv.best_estimator_

# from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score

# def analyze(model):
#     fpr, tpr, _ = roc_curve(y_test, model.predict_proba(X_test.values)[:,1]) #test AUC
#     plt.figure(figsize=(15,10))
#     plt.plot([0, 1], [0, 1], 'k--')
#     plt.plot(fpr, tpr, label="test")

#     fpr_train, tpr_train, _ = roc_curve(y_train, model.predict_proba(X_train.values)[:,1]) #train AUC
#     plt.plot(fpr_train, tpr_train, label="train")
#     auc_test = roc_auc_score(y_test, model.predict_proba(X_test.values)[:,1])
#     auc_train = roc_auc_score(y_train, model.predict_proba(X_train.values)[:,1])
#     plt.legend()
#     plt.title('AUC score is %.2f on test and %.2f on training'%(auc_test, auc_train))
#     plt.show()
    
#     plt.figure(figsize=(15, 10))
#     cm = confusion_matrix(y_test, model.predict(X_test.values))
#     sns.heatmap(cm, annot=True, fmt="d")

# analyze(gb)

with open("country_name.txt", "r", encoding="utf-8") as f:
    info = f.readlines()
    info = list(map(lambda x:x.strip(), info))

English_name = info[:32]
Chinese_name = info[32:]

country_name = {}

for each in zip(English_name, Chinese_name):
    country_name[each[0]] = each[1]


table = {'A': [['Qatar', 0, []],
  ['Ecuador', 0, []],
  ['Senegal', 0, []],
  ['Netherlands', 0, []]],
 'B': [['England', 0, []],
  ['Iran', 0, []],
  ['United States', 0, []],
  ['Wales', 0, []]],
 'C': [['Argentina', 0, []],
  ['Saudi Arabia', 0, []],
  ['Mexico', 0, []],
  ['Poland', 0, []]],
 'D': [['France', 0, []],
  ['Australia', 0, []],
  ['Denmark', 0, []],
  ['Tunisia', 0, []]],
 'E': [['Spain', 0, []],
  ['Costa Rica', 0, []],
  ['Germany', 0, []],
  ['Japan', 0, []]],
 'F': [['Belgium', 0, []],
  ['Canada', 0, []],
  ['Morocco', 0, []],
  ['Croatia', 0, []]],
 'G': [['Brazil', 0, []],
  ['Serbia', 0, []],
  ['Switzerland', 0, []],
  ['Cameroon', 0, []]],
 'H': [['Portugal', 0, []],
  ['Ghana', 0, []],
  ['Uruguay', 0, []],
  ['South Korea', 0, []]]}
groups = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
group_count = 7
matches = [('A', 'Qatar', 'Ecuador'),
 ('A', 'Senegal', 'Netherlands'),
 ('A', 'Qatar', 'Senegal'),
 ('A', 'Netherlands', 'Ecuador'),
 ('A', 'Ecuador', 'Senegal'),
 ('A', 'Netherlands', 'Qatar'),
 ('B', 'England', 'Iran'),
 ('B', 'United States', 'Wales'),
 ('B', 'Wales', 'Iran'),
 ('B', 'England', 'United States'),
 ('B', 'Wales', 'England'),
 ('B', 'Iran', 'United States'),
 ('C', 'Argentina', 'Saudi Arabia'),
 ('C', 'Mexico', 'Poland'),
 ('C', 'Poland', 'Saudi Arabia'),
 ('C', 'Argentina', 'Mexico'),
 ('C', 'Poland', 'Argentina'),
 ('C', 'Saudi Arabia', 'Mexico'),
 ('D', 'Denmark', 'Tunisia'),
 ('D', 'France', 'Australia'),
 ('D', 'Tunisia', 'Australia'),
 ('D', 'France', 'Denmark'),
 ('D', 'Australia', 'Denmark'),
 ('D', 'Tunisia', 'France'),
 ('E', 'Germany', 'Japan'),
 ('E', 'Spain', 'Costa Rica'),
 ('E', 'Japan', 'Costa Rica'),
 ('E', 'Spain', 'Germany'),
 ('E', 'Japan', 'Spain'),
 ('E', 'Costa Rica', 'Germany'),
 ('F', 'Morocco', 'Croatia'),
 ('F', 'Belgium', 'Canada'),
 ('F', 'Belgium', 'Morocco'),
 ('F', 'Croatia', 'Canada'),
 ('F', 'Croatia', 'Belgium'),
 ('F', 'Canada', 'Morocco'),
 ('G', 'Switzerland', 'Cameroon'),
 ('G', 'Brazil', 'Serbia'),
 ('G', 'Cameroon', 'Serbia'),
 ('G', 'Brazil', 'Switzerland'),
 ('G', 'Serbia', 'Switzerland'),
 ('G', 'Cameroon', 'Brazil'),
 ('H', 'Uruguay', 'South Korea'),
 ('H', 'Portugal', 'Ghana'),
 ('H', 'South Korea', 'Ghana'),
 ('H', 'Portugal', 'Uruguay'),
 ('H', 'Ghana', 'Uruguay'),
 ('H', 'South Korea', 'Portugal')]

def find_stats(team_1):
#team_1 = "Qatar"
    past_games = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date")
    last5 = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date").tail(5)

    team_1_rank = past_games["rank"].values[-1]
    team_1_goals = past_games.score.mean()
    team_1_goals_l5 = last5.score.mean()
    team_1_goals_suf = past_games.suf_score.mean()
    team_1_goals_suf_l5 = last5.suf_score.mean()
    team_1_rank_suf = past_games.rank_suf.mean()
    team_1_rank_suf_l5 = last5.rank_suf.mean()
    team_1_gp_rank = past_games.points_by_rank.mean()
    team_1_gp_rank_l5 = last5.points_by_rank.mean()

    return [team_1_rank, team_1_goals, team_1_goals_l5, team_1_goals_suf, team_1_goals_suf_l5, team_1_rank_suf, team_1_rank_suf_l5, team_1_gp_rank, team_1_gp_rank_l5]

def find_features(team_1, team_2):
    rank_dif = team_1[0] - team_2[0]
    goals_dif = team_1[1] - team_2[1]
    goals_dif_l5 = team_1[2] - team_2[2]
    goals_suf_dif = team_1[3] - team_2[3]
    goals_suf_dif_l5 = team_1[4] - team_2[4]
    goals_per_ranking_dif = (team_1[1]/team_1[5]) - (team_2[1]/team_2[5])
    dif_rank_agst = team_1[5] - team_2[5]
    dif_rank_agst_l5 = team_1[6] - team_2[6]
    dif_gp_rank = team_1[7] - team_2[7]
    dif_gp_rank_l5 = team_1[8] - team_2[8]
    
    return [rank_dif, goals_dif, goals_dif_l5, goals_suf_dif, goals_suf_dif_l5, goals_per_ranking_dif, dif_rank_agst, dif_rank_agst_l5, dif_gp_rank, dif_gp_rank_l5, 1, 0]

advanced_group = []
last_group = ""

for k in table.keys():
    for t in table[k]:
        t[1] = 0
        t[2] = []
        
for idx, teams in enumerate(matches):
    draw = False
    team_1 = find_stats(teams[1])
    team_2 = find_stats(teams[2])

    features_g1 = find_features(team_1, team_2)
    features_g2 = find_features(team_2, team_1)

    probs_g1 = gb.predict_proba([features_g1])
    probs_g2 = gb.predict_proba([features_g2])
    
    team_1_prob_g1 = probs_g1[0][0]
    team_1_prob_g2 = probs_g2[0][1]
    team_2_prob_g1 = probs_g1[0][1]
    team_2_prob_g2 = probs_g2[0][0]

    team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
    team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
    
    if ((team_1_prob_g1 > team_2_prob_g1) & (team_2_prob_g2 > team_1_prob_g2)) | ((team_1_prob_g1 < team_2_prob_g1) & (team_2_prob_g2 < team_1_prob_g2)):
        draw=True
        for i in table[teams[0]]:
            if i[0] == teams[1] or i[0] == teams[2]:
                i[1] += 1
                
    elif team_1_prob > team_2_prob:
        winner = teams[1]
        winner_proba = team_1_prob
        for i in table[teams[0]]:
            if i[0] == teams[1]:
                i[1] += 3
                
    elif team_2_prob > team_1_prob:  
        winner = teams[2]
        winner_proba = team_2_prob
        for i in table[teams[0]]:
            if i[0] == teams[2]:
                i[1] += 3
    
    for i in table[teams[0]]: #adding criterio de desempate (probs por jogo)
            if i[0] == teams[1]:
                i[2].append(team_1_prob)
            if i[0] == teams[2]:
                i[2].append(team_2_prob)

    if last_group != teams[0]:
        if last_group != "":
            print("\n")
            print("小组 %s 排名: "%(last_group))
            
            for i in table[last_group]: #adding crieterio de desempate
                i[2] = np.mean(i[2])
            
            final_points = table[last_group]
            final_table = sorted(final_points, key=itemgetter(1, 2), reverse = True)
            advanced_group.append([final_table[0][0], final_table[1][0]])
            for i in final_table:
                print("%s -------- %d"%(country_name[i[0]] + "(" + i[0] + ")", i[1]))
        print("\n")
        print("-"*10+" 开始分析小组 %s "%(teams[0])+"-"*10)
        
        
    if draw == False:
        print("小组 %s - %s vs. %s: %s 获胜,胜率: %.2f"%(teams[0], country_name[teams[1]] + "(" + teams[1] + ")", country_name[teams[2]] + "(" + teams[2] + ")", country_name[winner] + "(" + winner + ")", winner_proba))
        save_res(teams[1], teams[2], winner, winner_proba, "{}-{}.png".format(teams[0], idx))
    else:
        print("小组 %s - %s vs. %s: Draw"%(teams[0], teams[1], teams[2]))
        save_res_draw(teams[1], teams[2], teams[2], 0.5, "{}-{}.png".format(teams[0], idx))
    last_group =  teams[0]

print("\n")
print("小组 %s 排名: "%(last_group))

for i in table[last_group]: #adding crieterio de desempate
    i[2] = np.mean(i[2])
            
final_points = table[last_group]
final_table = sorted(final_points, key=itemgetter(1, 2), reverse = True)
advanced_group.append([final_table[0][0], final_table[1][0]])
for i in final_table:
    print("%s -------- %d"%(country_name[i[0]] + "(" + i[0] + ")", i[1]))


advanced = advanced_group

playoffs = {"16 强": [], "四分之一决赛": [], "半决赛": [], "决赛": []}

for p in playoffs.keys():
    playoffs[p] = []

actual_round = ""
next_rounds = []

for p in playoffs.keys():
    if p == "16 强":
        control = []
        for a in range(0, len(advanced*2), 1):
            if a < len(advanced):
                if a % 2 == 0:
                    control.append((advanced*2)[a][0])
                else:
                    control.append((advanced*2)[a][1])
            else:
                if a % 2 == 0:
                    control.append((advanced*2)[a][1])
                else:
                    control.append((advanced*2)[a][0])

        playoffs[p] = [[control[c], control[c+1]] for c in range(0, len(control)-1, 1) if c%2 == 0]
        
        for i in range(0, len(playoffs[p]), 1):
            game = playoffs[p][i]
            
            home = game[0]
            away = game[1]
            team_1 = find_stats(home)
            team_2 = find_stats(away)

            features_g1 = find_features(team_1, team_2)
            features_g2 = find_features(team_2, team_1)
            
            probs_g1 = gb.predict_proba([features_g1])
            probs_g2 = gb.predict_proba([features_g2])
            
            team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
            team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
            
            if actual_round != p:
                print("-"*10)
                print("开始模拟 %s"%(p))
                print("-"*10)
                print("\n")
            
            if team_1_prob < team_2_prob:
                print("%s vs. %s: %s 晋级,概率: %.2f"%(country_name[home] + "(" + home + ")", country_name[away] + "(" + away + ")", country_name[away] + "(" + away + ")", team_2_prob))

                save_res(home, away, away, team_2_prob, "%s.png" % str(time.time()).replace(".", "_"))
                
                next_rounds.append(away)
            else:
                print("%s vs. %s: %s 晋级,概率: %.2f"%(country_name[home] + "(" + home + ")", country_name[away] + "(" + away + ")", country_name[home] + "(" + home + ")", team_1_prob))
                save_res(home, away, home, team_1_prob, "%s.png" % str(time.time()).replace(".", "_"))
                next_rounds.append(home)
            
            game.append([team_1_prob, team_2_prob])
            playoffs[p][i] = game
            actual_round = p
        
    else:
        playoffs[p] = [[next_rounds[c], next_rounds[c+1]] for c in range(0, len(next_rounds)-1, 1) if c%2 == 0]
        next_rounds = []
        for i in range(0, len(playoffs[p])):
            game = playoffs[p][i]
            home = game[0]
            away = game[1]
            team_1 = find_stats(home)
            team_2 = find_stats(away)
            
            features_g1 = find_features(team_1, team_2)
            features_g2 = find_features(team_2, team_1)
            
            probs_g1 = gb.predict_proba([features_g1])
            probs_g2 = gb.predict_proba([features_g2])
            
            team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
            team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
            
            if actual_round != p:
                print("-"*10)
                print("开始模拟 %s"%(p))
                print("-"*10)
                print("\n")
            
            if team_1_prob < team_2_prob:
                print("%s vs. %s: %s 晋级,概率: %.2f"%(country_name[home] + "(" + home + ")", country_name[away] + "(" + away + ")", country_name[away] + "(" + away + ")", team_2_prob))

                save_res(home, away, away, team_2_prob, "%s.png" % str(time.time()).replace(".", "_"))

                next_rounds.append(away)
            else:
                print("%s vs. %s: %s 晋级,概率: %.2f"%(country_name[home] + "(" + home + ")", country_name[away] + "(" + away + ")", country_name[home] + "(" + home + ")", team_1_prob))
                save_res(home, away, home, team_1_prob, "%s.png" % str(time.time()).replace(".", "_"))
                next_rounds.append(home)
            game.append([team_1_prob, team_2_prob])
            playoffs[p][i] = game
            actual_round = p







四、成品链接
Predicting-FIFA-2022-World-Cup-main.zip (1.95 MB, 下载次数: 358)

蓝奏云下载链接:
https://wwm.lanzout.com/iyqmF0gw8uif
密码:52pj

免费评分

参与人数 13吾爱币 +10 热心值 +11 收起 理由
wanlued + 1 热心回复!
ccc2 + 1 谢谢@Thanks!
三滑稽甲苯 + 1 用心讨论,共获提升!
qqppoo + 1 我很赞同!
zhaoqingdz + 1 谢谢@Thanks!
Lucifer_BW + 1 + 1 我很赞同!
RickSanchez + 1 + 1 我很赞同!
f2arayner + 1 + 1 谢谢@Thanks!
Schwarz + 1 + 1 谢谢@Thanks!
an9el + 1 + 1 我很赞同!
viewing727360 + 1 + 1 我很赞同!
wendelhwh + 1 + 1 别墅靠海,足球反买
xiejunxing + 1 + 1 谢谢@Thanks!

查看全部评分

发帖前要善用论坛搜索功能,那里可能会有你要找的答案或者已经有人发布过相同内容了,请勿重复发帖。

uouobb 发表于 2022-11-26 00:23
C:\Python\Python310\python.exe C:/Users/Administrator/Desktop/Predicting-FIFA-2022-World-Cup-main/predict.py
C:\Users\Administrator\Desktop\Predicting-FIFA-2022-World-Cup-main\predict.py:56: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
  team_stats = home_team.append(away_team)#.sort_values("date")
C:\Users\Administrator\Desktop\Predicting-FIFA-2022-World-Cup-main\predict.py:141: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df["target"] = df["result"].apply(lambda x: no_draw(x))

一堆好家伙。。。感觉你也是不知哪搞来的
uouobb 发表于 2022-11-26 00:12
Traceback (most recent call last):
  File "C:\Users\Administrator\Desktop\Predicting-FIFA-2022-World-Cup-main\predict.py", line 7, in <module>
    from save_res import save_res, save_res_draw
  File "C:\Users\Administrator\Desktop\Predicting-FIFA-2022-World-Cup-main\save_res.py", line 4, in <module>
    import cv2
ModuleNotFoundError: No module named 'cv2'

没有cv2
smileat2000 发表于 2022-11-25 22:04
Clown4730 发表于 2022-11-25 22:05
拿走了。
deguoqieguo666 发表于 2022-11-25 22:05
拿走了,谢谢分享。
Aerberter 发表于 2022-11-25 22:09
可靠不可靠,看看
charleschai 发表于 2022-11-25 22:11
巴西!巴西!哈哈!
Chaos666 发表于 2022-11-25 22:17
哈哈 会玩
sam喵喵 发表于 2022-11-25 22:18
C罗点球进去以后,葡萄牙整体移速降低30%,球员全属性降低了30%,越看越假了
sam喵喵 发表于 2022-11-25 22:19
莱奥进球之后也开始梦游
gcode 发表于 2022-11-25 22:22
都没时间好好看看,真是遗憾了
您需要登录后才可以回帖 登录 | 注册[Register]

本版积分规则

返回列表

RSS订阅|小黑屋|处罚记录|联系我们|吾爱破解 - LCG - LSG ( 京ICP备16042023号 | 京公网安备 11010502030087号 )

GMT+8, 2025-1-11 23:49

Powered by Discuz!

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表