吾爱破解 - 52pojie.cn

 找回密码
 注册[Register]

QQ登录

只需一步,快速开始

查看: 2230|回复: 4
收起左侧

[C&C++ 原创] RSA加密支持中文和文件加密,效率已优化【中文变量版】

[复制链接]
xuson 发表于 2023-3-29 16:16
本帖最后由 xuson 于 2023-4-13 14:50 编辑

由于使用了24bit(0xFFFFFF)来换算,导致加密解密的时候比较耗时(加密700多字节大概在48秒,待优化)。
       加密的内容会双字节合并,代码里边也注释了3字节合并的有能力的可以尝试使用。
由于使用的素数比较小,比较容易被破解
[C++] 纯文本查看 复制代码
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#ifndef xRSA_H
#define xRSA_H
#include <string>
#include <iostream>
#include <ctime>
#include <sys/timeb.h>
 
using std::cout;
using std::endl;
 
 
int 素数[170] = {
    1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,
    1151,1153,1163,1171,1181,1187,1193,1217,1223,1237,
    1217,1223,1231,1237,1259,1277,1283,1367,1381,1399,
    1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,
    1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,
    1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,
    2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,
    2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,
    2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,
    3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,
    3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,
    3559,3571,3581,3583,3593,3607,3613,3617,3623,3631, //120
 
    65537,65551,65579,65599,65809,65831,65851,65867,65899,66137,
    66161,66179,66191,66221,66293,66529,66553,66571,66593,66617,
    70249,70289,70309,70313,70583,70619,70639,70667,70921,70957,
    75937,75983,75989,76003,76081,76123,76159,76231,76259,76303,
    76369,76421,76471,76507,76541,76597,76649,76679,78989,79063};
 
class x加密类
{
public:
    x加密类() {
        this->_乘积 = this->_私钥 = this->_公钥 = 1;
    }
    ~x加密类() {
 
    }
 
    unsigned long 加密(const char *明文, unsigned long 明文长度, char *密文) {
        if (this->_公钥==0) return 0;
        if (密文==0) {
            密文 = (char*)malloc(sizeof(char)*明文长度 * 3 + 1);
            memset(&密文[0], 0, 明文长度 * 3 + 1);
        }
        unsigned long id = 0;
        for (int i = 0; i < 明文长度; i+=2)
        {
            this->_Num = (unsigned char)明文[i+1];
            this->_Num+= (unsigned char)明文[i] * 0x100;
            //this->_Num+= (unsigned char)明文[i+2] * 0x10000;
            this->_N = PowMod(this->_Num, this->_私钥, this->_乘积);
            密文[id++] = (unsigned char)( this->_N & 0xFF              );
            密文[id++] = (unsigned char)((this->_N & 0xFF0000) / 0x10000);
            密文[id++] = (unsigned char)((this->_N & 0xFF00  ) / 0x100  );
            //cout << std::hex << (int)this->_N << endl;
            //cout << std::hex << (int)密文[id-3] << endl;
            //cout << std::hex << (int)密文[id-2] << endl;
            //cout << std::hex << (int)密文[id-1] << endl;
        }
        return id;
    }
 
    unsigned long 解密(const char *密文, unsigned long 密文长度, char *明文) {
        if (this->_私钥==0) return 0;
        if (明文==0) {
            明文 = (char*)malloc(sizeof(char)*密文长度 + 1);
            memset(&明文[0], 0, 密文长度 + 1);
        }
 
        unsigned long id = 0;
        for (int i = 0; i < 密文长度; i += 3)
        {
            this->_N = (unsigned char)密文[i];
            this->_N+= (unsigned char)密文[i+1] * 0x10000;
            this->_N+= (unsigned char)密文[i+2] * 0x100;
            this->_Num = PowMod(this->_N, this->_公钥, this->_乘积);
            明文[id++] = (unsigned char)((this->_Num & 0xFF00)/ 0x100);
            明文[id++] = (unsigned char)(this->_Num & 0xFF);
            //明文[id++] = (unsigned char)((this->_Num & 0xFF0000)/ 0x10000);
        }
        return id;
    }
 
    //产生私钥和公钥
    void 生成密钥(unsigned __int64 公钥=0, unsigned __int64 私钥=0, unsigned __int64 乘积=0)
    {
        if ((公钥!=0 || 私钥!=0) && 乘积!=0) {
            this->_乘积 = 乘积;
            this->_公钥 = 公钥;
            this->_私钥 = 私钥;
        } else {
            this->_公钥 = 素数[this->Rand(50)+120]; // 0x010001;
            unsigned __int64 p = 素数[this->Rand(120)];
            unsigned __int64 q = 素数[this->Rand(120)];
            while(p==q) { q = 素数[this->Rand(120)]; }
            this->_乘积 = p * q;
            this->_私钥 = reverseMod(this->_公钥, (p - 1)*(q - 1));
            cout << "p:" << p << ", q:" << q << endl;
        }
 
        char cN[20], cA[20], cB[20];
        sprintf(cN, "0x%06X", this->_乘积);
        sprintf(cA, "0x%06X", this->_公钥);
        sprintf(cB, "0x%06X", this->_私钥);
        cout << "公钥:" << "(" << cN << "," << cA << ")" << endl;
        cout << "私钥:" << "(" << cN << "," << cB << ")" << endl;
    }
 
private:
    unsigned __int64 _Num, _N;
    unsigned __int64 _乘积; //n=p*q
    unsigned __int64 _私钥; //a对于φ(n)的模反元素
    unsigned __int64 _公钥;
 
    //模乘运算,返回值 x=a*b mod n
    //模幂运算,返回值 x=base^pow mod n
    unsigned __int64 PowMod(unsigned __int64 值, unsigned __int64 密钥, unsigned __int64 乘积)
    {
        if (密钥 == 1)
            return 值 % 乘积;
        else
            return (PowMod(值, 密钥 / 2, 乘积)*PowMod(值, 密钥 - 密钥 / 2, 乘积)) % 乘积;
    }
    //返回d=gcd(a,b);和对应于等式ax+by=d中的x,y
    __int64 extend_gcd(__int64 one, __int64 two, __int64 &x, __int64 &y) {
        if (one == 0 && two == 0) return -1;//无最大公约数
        if (two == 0) {
            x = 1; y = 0; return one;
        }
        __int64 d = extend_gcd(two, one%two, y, x);
        y -= one / two * x;
        return d;
    }
    //ax = 1(mod n) 求X
    __int64 reverseMod(__int64 one, __int64 two) {
        __int64 x, y;
        __int64 d = extend_gcd(one, two, x, y);
        if (d == 1)
            return (x%two + two) % two;
        else return -1;
    }
     
    unsigned long time_stamp;
    /* ================================
        函数: Rand
        参数: [in]seeds=种子数,最大值
        描述: 随机产生整型数字
       ================================ */
    unsigned int Rand(const int seeds)
    {
        if (seeds == 0) return seeds;
        struct timeb timeSeed;
        ftime(&timeSeed);
        unsigned long _timestamp = ((timeSeed.time & 0xFFFFFFFFUL) * 0x10000UL + timeSeed.millitm) & 0xFFFFFFFFUL;
        if (_timestamp - time_stamp > 100) {
            time_stamp = _timestamp;
            srand(time_stamp); // milli time
        }
        return rand() % seeds;
    }
};
#endif


加密效果.png

免费评分

参与人数 4吾爱币 +10 热心值 +4 收起 理由
L。a + 1 + 1 我很赞同!
苏紫方璇 + 7 + 1 欢迎分析讨论交流,吾爱破解论坛有你更精彩!
zhuzhuxia111 + 1 + 1 我很赞同!
461735945 + 1 + 1 谢谢@Thanks!

查看全部评分

发帖前要善用论坛搜索功能,那里可能会有你要找的答案或者已经有人发布过相同内容了,请勿重复发帖。

1200abcd 发表于 2023-3-29 18:04
学习了··
 楼主| xuson 发表于 2023-3-30 11:36
说明一下:
1、现在这个思路是按网络上解释的RSA加密解密去实现,加上自己的了解处理了中文的加密解密。但是效果不好。
2、后续在此基础上增加变种处理,使用16bit的素数(short类型)会提高更快的加密解密速度。

现在主要是卡在中文字符如果拆分组合才能更好的加密解密。
whizzer 发表于 2023-4-1 08:45
 楼主| xuson 发表于 2023-4-11 15:33
本帖最后由 xuson 于 2023-4-20 15:24 编辑

最新代码使用Short类型作为密钥(16bit)数值,速度效果提升几十倍。


github源码库: https://github.com/CSXing/RSA-Encryption-and-decryption
您需要登录后才可以回帖 登录 | 注册[Register]

本版积分规则

返回列表

RSS订阅|小黑屋|处罚记录|联系我们|吾爱破解 - LCG - LSG ( 京ICP备16042023号 | 京公网安备 11010502030087号 )

GMT+8, 2025-4-7 05:49

Powered by Discuz!

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表