Javascript 和 我之前发的 python加密
以及 go加密
解密不一样 不需要导那么多的库
只需要安装几个库 其中需要了解最多的 crypto-js
具体就不多介绍了直接上官网
https://www.npmjs.com/package/crypto-js
安装
npm install crypto-js --save-dev
npm install md5 --save-dev
一些常见的built-in 函数加密
unescape
unescape() 函数可对通过 escape() 编码的字符串进行解码。
let e = escape("始識")
console.log(e) // %u59CB%u8B58
let u = unescape(e)
console.log(u) // 始識
URL编码与解码
let e = encodeURI("https://始識的博客")
console.log(e) // https://%E5%A7%8B%E8%AD%98%E7%9A%84%E5%8D%9A%E5%AE%A2
let u = decodeURI(e)
console.log(u) // https://始識的博客
fromCharCode
将 Unicode 编码转为一个字符
var n = String.fromCharCode(65);
// A
[101,118,97,108].map(item=>{
return String.fromCharCode(item)
})
['e', 'v', 'a', 'l']
Base64
btoa atob
let e = btoa("https://www.cnblogs.com/zichliang/p/17265960.html")
console.log(e) // // https://%E5%A7%8B%E8%AD%98%E7%9A%84%E5%8D%9A%E5%AE%A2
let u = atob(e)
console.log(u) // https://www.cnblogs.com/zichliang/p/17265960.html
node实现方式
// Base64 encoded string
const str = 'https://www.cnblogs.com/zichliang/p/17265960.html';
//b编码
const buffBase64 = Buffer.from(str, 'utf-8').toString('base64');
console.log(buffBase64);
//解码
const buffStr = Buffer.from(buffBase64, 'base64').toString("utf-8");
// print normal string
console.log(buffStr);
引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function base64Encode() {
var srcs = CryptoJS.enc.Utf8.parse(text);
var encodeData = CryptoJS.enc.Base64.stringify(srcs);
return encodeData
}
function base64Decode() {
var srcs = CryptoJS.enc.Base64.parse(encodeData);
var decodeData = srcs.toString(CryptoJS.enc.Utf8);
return decodeData
}
var text = "https://www.cnblogs.com/zichliang/p/17265960.html"
var encodeData = base64Encode()
var decodeData = base64Decode()
console.log("Base64 编码: ", encodeData)
console.log("Base64 解码: ", decodeData)
// Base64 编码: aHR0cHM6Ly93d3cuY25ibG9ncy5jb20vemljaGxpYW5nL3AvMTcyNjU5NjAuaHRtbA==
// Base64 解码: https://www.cnblogs.com/zichliang/p/17265960.html
MD5
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function MD5Test() {
var text = "https://www.cnblogs.com/zichliang"
return CryptoJS.MD5(text).toString()
}
console.log(MD5Test()) // 50177badb579733de56b628ae57fb972
PBKDF2
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function pbkdf2Encrypt() {
var text = "https://www.cnblogs.com/zichliang"
var salt = "1234567"
// key 长度 128,10 次重复运算
var encryptedData = CryptoJS.PBKDF2(text, salt, {keySize: 128/32,iterations: 10});
return encryptedData.toString()
}
console.log(pbkdf2Encrypt()) // bcda4be78de797d8f5067331b1a70d40
SHA1
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function SHA1Encrypt() {
var text = "https://www.cnblogs.com/zichliang"
return CryptoJS.SHA1(text).toString();
}
console.log(SHA1Encrypt()) // ca481c13d5af7135b69d11ffb0a443a635fbc307
SHA256
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function SHA256Encrypt() {
var text = "https://www.cnblogs.com/zichliang"
return CryptoJS.SHA256(text).toString();
}
console.log(SHA256Encrypt()) // 0b16c8942abbf124f6fef65ae145314dd72ed495ede2b95fe0bde722c0e26478
或者使用原生JS源代码文件生成
不要问为什么只有这个有js源码,因为这个加密我刚好用到了。
function sha256(s) {
const chrsz = 8
const hexcase = 0
function safe_add(x, y) {
const lsw = (x & 0xFFFF) + (y & 0xFFFF)
const msw = (x >> 16) + (y >> 16) + (lsw >> 16)
return (msw << 16) | (lsw & 0xFFFF)
}
function S(X, n) {
return (X >>> n) | (X << (32 - n))
}
function R(X, n) {
return (X >>> n)
}
function Ch(x, y, z) {
return ((x & y) ^ ((~x) & z))
}
function Maj(x, y, z) {
return ((x & y) ^ (x & z) ^ (y & z))
}
function Sigma0256(x) {
return (S(x, 2) ^ S(x, 13) ^ S(x, 22))
}
function Sigma1256(x) {
return (S(x, 6) ^ S(x, 11) ^ S(x, 25))
}
function Gamma0256(x) {
return (S(x, 7) ^ S(x, 18) ^ R(x, 3))
}
function Gamma1256(x) {
return (S(x, 17) ^ S(x, 19) ^ R(x, 10))
}
function core_sha256(m, l) {
const K = [0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0xFC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2]
const HASH = [0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19]
const W = new Array(64)
let a, b, c, d, e, f, g, h, i, j
let T1, T2
m[l >> 5] |= 0x80 << (24 - l % 32)
m[((l + 64 >> 9) << 4) + 15] = l
for (i = 0; i < m.length; i += 16) {
a = HASH[0]
b = HASH[1]
c = HASH[2]
d = HASH[3]
e = HASH[4]
f = HASH[5]
g = HASH[6]
h = HASH[7]
for (j = 0; j < 64; j++) {
if (j < 16) {
W[j] = m[j + i]
} else {
W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16])
}
T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j])
T2 = safe_add(Sigma0256(a), Maj(a, b, c))
h = g
g = f
f = e
e = safe_add(d, T1)
d = c
c = b
b = a
a = safe_add(T1, T2)
}
HASH[0] = safe_add(a, HASH[0])
HASH[1] = safe_add(b, HASH[1])
HASH[2] = safe_add(c, HASH[2])
HASH[3] = safe_add(d, HASH[3])
HASH[4] = safe_add(e, HASH[4])
HASH[5] = safe_add(f, HASH[5])
HASH[6] = safe_add(g, HASH[6])
HASH[7] = safe_add(h, HASH[7])
}
return HASH
}
function str2binb(str) {
const bin = []
const mask = (1 << chrsz) - 1
for (let i = 0; i < str.length * chrsz; i += chrsz) {
bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32)
}
return bin
}
function Utf8Encode(string) {
string = string.replace(/\r\n/g, '\n')
let utfText = ''
for (let n = 0; n < string.length; n++) {
const c = string.charCodeAt(n)
if (c < 128) {
utfText += String.fromCharCode(c)
} else if ((c > 127) && (c < 2048)) {
utfText += String.fromCharCode((c >> 6) | 192)
utfText += String.fromCharCode((c & 63) | 128)
} else {
utfText += String.fromCharCode((c >> 12) | 224)
utfText += String.fromCharCode(((c >> 6) & 63) | 128)
utfText += String.fromCharCode((c & 63) | 128)
}
}
return utfText
}
function binb2hex(binarray) {
const hex_tab = hexcase ? '0123456789ABCDEF' : '0123456789abcdef'
let str = ''
for (let i = 0; i < binarray.length * 4; i++) {
str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) +
hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF)
}
return str
}
s = Utf8Encode(s)
return binb2hex(core_sha256(str2binb(s), s.length * chrsz))
}
使用
console.log(sha256('https://www.cnblogs.com/zichliang')) // 0b16c8942abbf124f6fef65ae145314dd72ed495ede2b95fe0bde722c0e26478
HMAC-SHA256
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function HmacSHA256Encrypt() {
var hash = CryptoJS.HmacSHA256("这是加密信息", "这是秘钥");
var hashInBase64 = CryptoJS.enc.Base64.stringify(hash);
return hashInBase64;
}
console.log(HmacSHA256Encrypt()) // qMlLziV3yzjVb3VgwWhbSTYLsCZXTB1jftypu04SUDM=
js源代码
// To ensure cross-browser support even without a proper SubtleCrypto
// impelmentation (or without access to the impelmentation, as is the case with
// Chrome loaded over HTTP instead of HTTPS), this library can create SHA-256
// HMAC signatures using nothing but raw JavaScript
/* eslint-disable no-magic-numbers, id-length, no-param-reassign, new-cap */
// By giving internal functions names that we can mangle, future calls to
// them are reduced to a single byte (minor space savings in minified file)
var uint8Array = Uint8Array;
var uint32Array = Uint32Array;
var pow = Math.pow;
// Will be initialized below
// Using a Uint32Array instead of a simple array makes the minified code
// a bit bigger (we lose our `unshift()` hack), but comes with huge
// performance gains
var DEFAULT_STATE = new uint32Array(8);
var ROUND_CONSTANTS = [];
// Reusable object for expanded message
// Using a Uint32Array instead of a simple array makes the minified code
// 7 bytes larger, but comes with huge performance gains
var M = new uint32Array(64);
// After minification the code to compute the default state and round
// constants is smaller than the output. More importantly, this serves as a
// good educational aide for anyone wondering where the magic numbers come
// from. No magic numbers FTW!
function getFractionalBits(n) {
return ((n - (n | 0)) * pow(2, 32)) | 0;
}
var n = 2, nPrime = 0;
while (nPrime < 64) {
// isPrime() was in-lined from its original function form to save
// a few bytes
var isPrime = true;
// Math.sqrt() was replaced with pow(n, 1/2) to save a few bytes
// var sqrtN = pow(n, 1 / 2);
// So technically to determine if a number is prime you only need to
// check numbers up to the square root. However this function only runs
// once and we're only computing the first 64 primes (up to 311), so on
// any modern CPU this whole function runs in a couple milliseconds.
// By going to n / 2 instead of sqrt(n) we net 8 byte savings and no
// scaling performance cost
for (var factor = 2; factor <= n / 2; factor++) {
if (n % factor === 0) {
isPrime = false;
}
}
if (isPrime) {
if (nPrime < 8) {
DEFAULT_STATE[nPrime] = getFractionalBits(pow(n, 1 / 2));
}
ROUND_CONSTANTS[nPrime] = getFractionalBits(pow(n, 1 / 3));
nPrime++;
}
n++;
}
// For cross-platform support we need to ensure that all 32-bit words are
// in the same endianness. A UTF-8 TextEncoder will return BigEndian data,
// so upon reading or writing to our ArrayBuffer we'll only swap the bytes
// if our system is LittleEndian (which is about 99% of CPUs)
var LittleEndian = !!new uint8Array(new uint32Array([1]).buffer)[0];
function convertEndian(word) {
if (LittleEndian) {
return (
// byte 1 -> byte 4
(word >>> 24) |
// byte 2 -> byte 3
(((word >>> 16) & 0xff) << 8) |
// byte 3 -> byte 2
((word & 0xff00) << 8) |
// byte 4 -> byte 1
(word << 24)
);
} else {
return word;
}
}
function rightRotate(word, bits) {
return (word >>> bits) | (word << (32 - bits));
}
function sha256(data) {
// Copy default state
var STATE = DEFAULT_STATE.slice();
// Caching this reduces occurrences of ".length" in minified JavaScript
// 3 more byte savings! :D
var legth = data.length;
// Pad data
var bitLength = legth * 8;
var newBitLength = (512 - ((bitLength + 64) % 512) - 1) + bitLength + 65;
// "bytes" and "words" are stored BigEndian
var bytes = new uint8Array(newBitLength / 8);
var words = new uint32Array(bytes.buffer);
bytes.set(data, 0);
// Append a 1
bytes[legth] = 0b10000000;
// Store length in BigEndian
words[words.length - 1] = convertEndian(bitLength);
// Loop iterator (avoid two instances of "var") -- saves 2 bytes
var round;
// Process blocks (512 bits / 64 bytes / 16 words at a time)
for (var block = 0; block < newBitLength / 32; block += 16) {
var workingState = STATE.slice();
// Rounds
for (round = 0; round < 64; round++) {
var MRound;
// Expand message
if (round < 16) {
// Convert to platform Endianness for later math
MRound = convertEndian(words[block + round]);
} else {
var gamma0x = M[round - 15];
var gamma1x = M[round - 2];
MRound =
M[round - 7] + M[round - 16] + (
rightRotate(gamma0x, 7) ^
rightRotate(gamma0x, 18) ^
(gamma0x >>> 3)
) + (
rightRotate(gamma1x, 17) ^
rightRotate(gamma1x, 19) ^
(gamma1x >>> 10)
)
;
}
// M array matches platform endianness
M[round] = MRound |= 0;
// Computation
var t1 =
(
rightRotate(workingState[4], 6) ^
rightRotate(workingState[4], 11) ^
rightRotate(workingState[4], 25)
) +
(
(workingState[4] & workingState[5]) ^
(~workingState[4] & workingState[6])
) + workingState[7] + MRound + ROUND_CONSTANTS[round]
;
var t2 =
(
rightRotate(workingState[0], 2) ^
rightRotate(workingState[0], 13) ^
rightRotate(workingState[0], 22)
) +
(
(workingState[0] & workingState[1]) ^
(workingState[2] & (workingState[0] ^
workingState[1]))
)
;
for (var i = 7; i > 0; i--) {
workingState[i] = workingState[i - 1];
}
workingState[0] = (t1 + t2) | 0;
workingState[4] = (workingState[4] + t1) | 0;
}
// Update state
for (round = 0; round < 8; round++) {
STATE[round] = (STATE[round] + workingState[round]) | 0;
}
}
// Finally the state needs to be converted to BigEndian for output
// And we want to return a Uint8Array, not a Uint32Array
return new uint8Array(new uint32Array(
STATE.map(function (val) {
return convertEndian(val);
})
).buffer);
}
function hmac(key, data) {
if (key.length > 64)
key = sha256(key);
if (key.length < 64) {
const tmp = new Uint8Array(64);
tmp.set(key, 0);
key = tmp;
}
// Generate inner and outer keys
var innerKey = new Uint8Array(64);
var outerKey = new Uint8Array(64);
for (var i = 0; i < 64; i++) {
innerKey[i] = 0x36 ^ key[i];
outerKey[i] = 0x5c ^ key[i];
}
// Append the innerKey
var msg = new Uint8Array(data.length + 64);
msg.set(innerKey, 0);
msg.set(data, 64);
// Has the previous message and append the outerKey
var result = new Uint8Array(64 + 32);
result.set(outerKey, 0);
result.set(sha256(msg), 64);
// Hash the previous message
return sha256(result);
}
// Convert a string to a Uint8Array, SHA-256 it, and convert back to string
const encoder = new TextEncoder("utf-8");
function sign(inputKey, inputData) {
const key = typeof inputKey === "string" ? encoder.encode(inputKey) : inputKey;
const data = typeof inputData === "string" ? encoder.encode(inputData) : inputData;
return hmac(key, data);
}
function hash(str) {
return hex(sha256(encoder.encode(str)));
}
function hex(bin) {
return bin.reduce((acc, val) =>
acc + ("00" + val.toString(16)).substr(-2)
, "");
}
使用
console.log(hex(sign("秘钥", "数据"))) // qMlLziV3yzjVb3VgwWhbSTYLsCZXTB1jftypu04SUDM=
HMAC
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function HMACEncrypt() {
var text = "https://www.cnblogs.com/zichliang"
var key = "secret"
return CryptoJS.HmacMD5(text, key).toString();
}
console.log(HMACEncrypt())// 20ca7a63f1f4a7047ffd6b722b45319a
DES
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function desEncrypt() {
var key = CryptoJS.enc.Utf8.parse(desKey),
iv = CryptoJS.enc.Utf8.parse(desIv),
srcs = CryptoJS.enc.Utf8.parse(text),
// CBC 加密模式,Pkcs7 填充方式
encrypted = CryptoJS.DES.encrypt(srcs, key, {
iv: iv,
mode: CryptoJS.mode.CBC,
padding: CryptoJS.pad.Pkcs7
});
return encrypted.toString();
}
function desDecrypt() {
var key = CryptoJS.enc.Utf8.parse(desKey),
iv = CryptoJS.enc.Utf8.parse(desIv),
srcs = encryptedData,
// CBC 加密模式,Pkcs7 填充方式
decrypted = CryptoJS.DES.decrypt(srcs, key, {
iv: iv,
mode: CryptoJS.mode.CBC,
padding: CryptoJS.pad.Pkcs7
});
return decrypted.toString(CryptoJS.enc.Utf8);
}
var text = "https://www.cnblogs.com/zichliang" // 待加密对象
var desKey = "0123456789ABCDEF" // 密钥
var desIv = "0123456789ABCDEF" // 初始向量
var encryptedData = desEncrypt()
var decryptedData = desDecrypt()
console.log("加密字符串: ", encryptedData)
console.log("解密字符串: ", decryptedData)
// 加密字符串: p+4ovmk1n5YwN3dq5y8VqhngLKW//5MM/qDgtj2SOC6TpJaFgSKEVg==
// 解密字符串: https://www.cnblogs.com/zichliang
3DES
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function tripleDesEncrypt() {
var key = CryptoJS.enc.Utf8.parse(desKey),
iv = CryptoJS.enc.Utf8.parse(desIv),
srcs = CryptoJS.enc.Utf8.parse(text),
// ECB 加密方式,Iso10126 填充方式
encrypted = CryptoJS.TripleDES.encrypt(srcs, key, {
iv: iv,
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Iso10126
});
return encrypted.toString();
}
function tripleDesDecrypt() {
var key = CryptoJS.enc.Utf8.parse(desKey),
iv = CryptoJS.enc.Utf8.parse(desIv),
srcs = encryptedData,
// ECB 加密方式,Iso10126 填充方式
decrypted = CryptoJS.TripleDES.decrypt(srcs, key, {
iv: iv,
mode: CryptoJS.mode.ECB,
padding: CryptoJS.pad.Iso10126
});
return decrypted.toString(CryptoJS.enc.Utf8);
}
var text = "https://www.cnblogs.com/zichliang" // 待加密对象
var desKey = "0123456789ABCDEF" // 密钥
var desIv = "0123456789ABCDEF" // 偏移量
var encryptedData = tripleDesEncrypt()
var decryptedData = tripleDesDecrypt()
console.log("加密字符串: ", encryptedData)
console.log("解密字符串: ", decryptedData)
// 加密字符串: pl/nNfpIrejwK+/X87VmGZIbS3kOB+IpFcx/97wpR4AO6q9HGjxb4w==
// 解密字符串: https://www.cnblogs.com/zichliang
AES
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function aesEncrypt() {
var key = CryptoJS.enc.Utf8.parse(aesKey),
iv = CryptoJS.enc.Utf8.parse(aesIv),
srcs = CryptoJS.enc.Utf8.parse(text),
// CBC 加密方式,Pkcs7 填充方式
encrypted = CryptoJS.AES.encrypt(srcs, key, {
iv: iv,
mode: CryptoJS.mode.CBC,
padding: CryptoJS.pad.Pkcs7
});
return encrypted.toString();
}
function aesDecrypt() {
var key = CryptoJS.enc.Utf8.parse(aesKey),
iv = CryptoJS.enc.Utf8.parse(aesIv),
srcs = encryptedData,
// CBC 加密方式,Pkcs7 填充方式
decrypted = CryptoJS.AES.decrypt(srcs, key, {
iv: iv,
mode: CryptoJS.mode.CBC,
padding: CryptoJS.pad.Pkcs7
});
return decrypted.toString(CryptoJS.enc.Utf8);
}
var text = "https://www.cnblogs.com/zichliang" // 待加密对象
var aesKey = "0123456789ABCDEF" // 密钥,16 倍数
var aesIv = "0123456789ABCDEF" // 偏移量,16 倍数
var encryptedData = aesEncrypt()
var decryptedData = aesDecrypt()
console.log("加密字符串: ", encryptedData)
console.log("解密字符串: ", decryptedData)
// 加密字符串: /q8i+1GN8yfzIb8CaEJfDOfDQ74in+XzQZYBtKF2wkAB6dM1qbBZ3HJVlY+kHDE3
// 解密字符串: https://www.cnblogs.com/zichliang
RC4
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function RC4Encrypt() {
return CryptoJS.RC4.encrypt(text, key).toString();
}
function RC4Decrypt(){
return CryptoJS.RC4.decrypt(encryptedData, key).toString(CryptoJS.enc.Utf8);
}
var text = "https://www.cnblogs.com/zichliang"
var key = "12345678ASDFG"
var encryptedData = RC4Encrypt()
var decryptedData = RC4Decrypt()
console.log("加密字符串: ", encryptedData)
console.log("解密字符串: ", decryptedData)
// 加密字符串: U2FsdGVkX19/bT2W57mzjwoF5Fc3Zb4WiyDU+MiNMmHfdJvZeScl0EW9yJWCPiRrsA==
// 解密字符串: https://www.cnblogs.com/zichliang
Rabbit
// 引用 crypto-js 加密模块
var CryptoJS = require('crypto-js')
function rabbitEncrypt() {
return CryptoJS.Rabbit.encrypt(text, key).toString();
}
function rabbitDecrypt() {
return CryptoJS.Rabbit.decrypt(encryptedData, key).toString(CryptoJS.enc.Utf8);
}
var text = "https://www.cnblogs.com/zichliang/p/16653303.html"
var key = "1234567ASDFG"
var encryptedData = rabbitEncrypt()
var decryptedData = rabbitDecrypt()
console.log("加密字符串: ", encryptedData)
console.log("解密字符串: ", decryptedData)
// 加密字符串: U2FsdGVkX1/pYbHvbNff3/RNpso4yRKIX0XDFta8hoLNxe52K8HSmF+XV8ayYqucTKVPP6AJtGczXS7U9kkxHnw=
// 解密字符串: https://www.cnblogs.com/zichliang/p/16653303.html
RSA
使用 node-rsa
需要安装一个库
npm install node-rsa
// 引用 node-rsa 加密模块
var NodeRSA = require('node-rsa');
function rsaEncrypt() {
pubKey = new NodeRSA(publicKey,'pkcs8-public');
var encryptedData = pubKey.encrypt(text, 'base64');
return encryptedData
}
function rsaDecrypt() {
priKey = new NodeRSA(privatekey,'pkcs8-private');
var decryptedData = priKey.decrypt(encryptedData, 'utf8');
return decryptedData
}
var key = new NodeRSA({b: 512}); //生成512位秘钥
var publicKey = key.exportKey('pkcs8-public'); //导出公钥
var privatekey = key.exportKey('pkcs8-private'); //导出私钥
var text = "https://www.cnblogs.com/zichliang/p/16653303.html"
var encryptedData = rsaEncrypt()
var decryptedData = rsaDecrypt()
console.log("公钥:\n", publicKey)
console.log("私钥:\n", privatekey)
console.log("加密字符串: ", encryptedData)
console.log("解密字符串: ", decryptedData)
/*
公钥:
-----BEGIN PUBLIC KEY-----
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAN7JoMDNvvpB/po2OMSeSKsromfP5EyI
0fAz6XDVwqdTUBwwAArLlqIzmVNK0yi4nlbj5eF+O8ZjRkRQ6xKP/CMCAwEAAQ==
-----END PUBLIC KEY-----
私钥:
-----BEGIN PRIVATE KEY-----
MIIBVAIBADANBgkqhkiG9w0BAQEFAASCAT4wggE6AgEAAkEA3smgwM2++kH+mjY4
xJ5IqyuiZ8/kTIjR8DPpcNXCp1NQHDAACsuWojOZU0rTKLieVuPl4X47xmNGRFDr
Eo/8IwIDAQABAkEArI0Ps6TnIJ9SmZAbYbWSZPjTvYHXuatSpq8eQ+Vb8Ql003G5
Y2FIoWpQX1jQ9/DsxEZ/1u+71bl08z1eONz2KQIhAPgLZOKanhDDaOn5sO7Y2RM3
TyLS08mCGNGQxEhkEttFAiEA5e7bvnrSNh1lcF/QTxkWPGoXb9kxPljm49CfiTS9
PEcCIDzxX7olTwzDVjWWeZhVgxArmK/vqMVrx3lF3lQC8ncZAiBlpY5nSoybd6tc
Xj8MeJ6n3o6112I5mbuYgqXEVhhCCQIgY6vinhOzMF0dX9MNjBm8x1mUCd4XG2TN
QQcOik3RIGw=
-----END PRIVATE KEY-----
加密字符串: ZolvYwjFqOp1Yldui7rm75mSN5kz7533nc3B3H6xZGQR9v0elhbcjmI9vXaBsgdLNTuyoVk3bfzWfQdeIpvCpcBCTGe1HG9KrSBYDiWJc4vBgVBz8D57/XaS1zjM0kuAJ/ELu4os7XG5lMQbRbFhHXs7zQsIBq6/m2IZdGWx7HjB2jiQBQPMfszdQUOwQA
bM5o7lRvUgdMVaZkEWpOTEybmUX4kxBP5CvNtB86oTRUw+U7Ex7QB8lWj33hoKvh70
解密字符串: https://www.cnblogs.com/zichliang/p/16653303.html
*/
使用自带模块crypto:
const crypto = require('crypto');
const nodeRSA = require('node-rsa');
// 生成一个1024长度的密钥对
const key = new nodeRSA({b: 1024});
// 导出公钥
const publicKey = key.exportKey('public');
// 导出私钥
const privateKey = key.exportKey('private');
const secret = 'https://www.cnblogs.com/zichliang/p/16653303.html'
// 使用私钥加密,公钥解密
const encrypt = crypto.privateEncrypt(privateKey, Buffer.from(secret));
const decrypt = crypto.publicDecrypt(publicKey, encrypt);
console.log('加密后:', encrypt.toString('base64'));
console.log('解密后:', decrypt.toString());
RSA 长加密
这个加密是真的麻烦 ,而且还需要导入jsencrypt.min.js
这里贴上 GitHub地址 https://github.com/wangqinglongDo/github_demo/blob/master/libs/jsencrypt.min.js
对了 还需要补环境 而且解密也不是很好用,如果有大佬知道如何解密的 希望在评论区告诉我
var encrypt = new JSEncrypt();
var publickKey = "-----BEGIN PUBLIC KEY-----\
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDLFb8qp1vRFvi/qfgi1Wg7Mi8l\
LcpfAc+tgpyD7aFW9QquQVMm/jG1IJZVQ6LsdkI7TiDutMCzOMCBXbdSC9BCIAGA\
L2Sz3cYVlGb1kYSM0ZMcUMIK5eF4Bptke070XHvbi8wArtysJ0l71RHDd786tNbG\
W0hDSw3zAqTErbxFaQIDAQAB\
-----END PUBLIC KEY-----\
"
encrypt.setPublicKey(publickKey); //设置公钥加密证书
var data = "https://www.cnblogs.com/zichliang/p/17265960.html";
var commonEncodeData = encrypt.encryptLong(data); // 普通的加密
console.log(commonEncodeData)
var cnEscapeData = window.btoa(window.encodeURIComponent(data)); //base64 解密后的加密
var encryptData = encrypt.encryptLong(cnEscapeData); //获取加密后数据。
console.log(encryptData)