吾爱破解 - 52pojie.cn

 找回密码
 注册[Register]

QQ登录

只需一步,快速开始

查看: 838|回复: 10
收起左侧

[Python 原创] 工资表生成工资条,并隐藏没有数据的列

[复制链接]
greatpeng 发表于 2024-10-31 17:25
本帖最后由 greatpeng 于 2024-10-31 17:34 编辑

python写的小工具
功能:根据工资表生成工资条,如果该员工没有该项数据,则生成的工资条隐藏该列。

工资表示例:
1.png

生成的工资条效果:
2.png


新手,编译完后可执行文件太大,不会处理。
有需要的自行编译吧。源码如下:


[Python] 纯文本查看 复制代码
import pandas as pd
from openpyxl import Workbook
from openpyxl.styles import Alignment
from tkinter import filedialog, Tk, simpledialog

def select_file():
    root = Tk()
    root.withdraw()  # Hide the main window.
    file_path = filedialog.askopenfilename(title="请选择工资表", filetypes=[("Excel files", "*.xlsx")])
    return file_path if file_path else None

def save_file(book, default_name="工资条"):
    root = Tk()
    root.withdraw()  # Hide the main window.
    save_path = filedialog.asksaveasfilename(initialfile=default_name,
                                             defaultextension=".xlsx",
                                             filetypes=[("Excel files", "*.xlsx")],
                                             title="数据已经生成,请选择保存位置")
    book.save(save_path)
    print(f"File saved as {save_path}")

def find_header_row_and_total_row(df):
    # Find the row indices of '姓名' and '合计'
    header_row = None
    total_row = None
    for i, row in df.iterrows():
        if '姓名' in row.values:
            header_row = i
        if '合计' in row.values:
            total_row = i
            break  # Stop searching once we find '合计'

    if header_row is None or total_row is None:
        raise ValueError("Header row containing '姓名' or '合计' not found.")

    return header_row, total_row

def extract_data(input_path):
    # Load the first sheet of the Excel file into a DataFrame
    df = pd.read_excel(input_path, header=None)

    # Find the header row and total row
    header_row, total_row = find_header_row_and_total_row(df)

    # Find the end column index ('备注')
    end_col_index = df.iloc[header_row].tolist().index('备注') + 1

    # Select the relevant columns and rows
    relevant_data = df.iloc[header_row + 1:total_row, :end_col_index]

    # Convert to dictionary
    data_dict = {}
    for index, row in relevant_data.iterrows():
        name = row[0]
        if pd.isna(name):  # Skip if the name cell is NaN
            continue
        if name not in data_dict:
            data_dict[name] = {}
        for col_name, value in zip(df.iloc[header_row], row):
            if col_name != '签字' and pd.notna(value):
                data_dict[name][col_name] = value

    return data_dict, df.iloc[header_row, :end_col_index].tolist(), input_path

def add_custom_row(ws, custom_name, num_cols):
    # Add a merged and centered row with the custom name
    ws.merge_cells(start_row=1, start_column=1, end_row=1, end_column=num_cols)
    ws.cell(row=1, column=1, value=custom_name).alignment = Alignment(horizontal='center', vertical='center')

def generate_pay_slips(data_dict, original_header, file_path):
    # Get the filename without extension
    file_name = file_path.split('/')[-1].split('.')[0]

    # Create a new workbook for the output
    wb = Workbook()

    # Remove the default sheet created by openpyxl
    default_sheet = wb.active
    wb.remove(default_sheet)

    # Generate pay slips for each employee
    for name, details in data_dict.items():
        # Create a new sheet for this employee
        ws = wb.create_sheet(name)

        # Filter out empty columns
        filtered_header = [h for h in original_header if details.get(h)]
        filtered_data = [details.get(h, '') for h in filtered_header]

        # Add a merged and centered row with the custom name
        num_cols = len(filtered_header)
        add_custom_row(ws, file_name, num_cols)

        # Write the filtered header row
        ws.append(filtered_header)

        # Write the filtered data row
        ws.append(filtered_data)

    # Save the workbook
    save_file(wb, "工资条")

if __name__ == "__main__":
    input_path = select_file()
    if input_path:
        try:
            data_dict, original_header, _ = extract_data(input_path)
            generate_pay_slips(data_dict, original_header, input_path)
        except Exception as e:
            print(f"An error occurred: {e}")

免费评分

参与人数 1吾爱币 +7 热心值 +1 收起 理由
苏紫方璇 + 7 + 1 欢迎分析讨论交流,吾爱破解论坛有你更精彩!

查看全部评分

发帖前要善用论坛搜索功能,那里可能会有你要找的答案或者已经有人发布过相同内容了,请勿重复发帖。

nbmissliu 发表于 2024-11-3 09:35
你打包的时候使用虚拟环境打包就好了, 为什么打包很大, 是因为你把你本机所有下载的库全部打包进去了, 所以特别大。
caochanyue 发表于 2024-11-3 19:23
hellopojie520 发表于 2024-11-3 21:55
seing520 发表于 2024-11-4 17:33
很实用的功能,学习了
 楼主| greatpeng 发表于 2024-11-5 10:19
nbmissliu 发表于 2024-11-3 09:35
你打包的时候使用虚拟环境打包就好了, 为什么打包很大, 是因为你把你本机所有下载的库全部打包进去了,  ...

好的,我找找教程,学一下。
kenxy 发表于 2024-11-7 11:26
每个人的工资条可以选择单独生成一个文件吗?
 楼主| greatpeng 发表于 2024-11-7 13:17
kenxy 发表于 2024-11-7 11:26
每个人的工资条可以选择单独生成一个文件吗?

可以,你需要吗?
 楼主| greatpeng 发表于 2024-11-7 13:22
kenxy 发表于 2024-11-7 11:26
每个人的工资条可以选择单独生成一个文件吗?

[Python] 纯文本查看 复制代码
import pandas as pd
from openpyxl import Workbook
from openpyxl.styles import Alignment
from tkinter import filedialog, Tk, simpledialog

def select_file():
    root = Tk()
    root.withdraw()  # Hide the main window.
    file_path = filedialog.askopenfilename(title="请选择工资表", filetypes=[("Excel files", "*.xlsx")])
    return file_path if file_path else None

def save_file(book, save_path):
    book.save(save_path)
    print(f"File saved as {save_path}")

def find_header_row_and_total_row(df):
    # Find the row indices of '姓名' and '合计'
    header_row = None
    total_row = None
    for i, row in df.iterrows():
        if '姓名' in row.values:
            header_row = i
        if '合计' in row.values:
            total_row = i
            break  # Stop searching once we find '合计'

    if header_row is None or total_row is None:
        raise ValueError("Header row containing '姓名' or '合计' not found.")

    return header_row, total_row

def extract_data(input_path):
    # Load the first sheet of the Excel file into a DataFrame
    df = pd.read_excel(input_path, header=None)

    # Find the header row and total row
    header_row, total_row = find_header_row_and_total_row(df)

    # Find the end column index ('备注')
    end_col_index = df.iloc[header_row].tolist().index('备注') + 1

    # Select the relevant columns and rows
    relevant_data = df.iloc[header_row + 1:total_row, :end_col_index]

    # Convert to dictionary
    data_dict = {}
    for index, row in relevant_data.iterrows():
        name = row[0]
        if pd.isna(name):  # Skip if the name cell is NaN
            continue
        if name not in data_dict:
            data_dict[name] = {}
        for col_name, value in zip(df.iloc[header_row], row):
            if col_name != '签字' and pd.notna(value):
                data_dict[name][col_name] = value

    return data_dict, df.iloc[header_row, :end_col_index].tolist(), input_path

def add_custom_row(ws, custom_name, num_cols):
    # Add a merged and centered row with the custom name
    ws.merge_cells(start_row=1, start_column=1, end_row=1, end_column=num_cols)
    ws.cell(row=1, column=1, value=custom_name).alignment = Alignment(horizontal='center', vertical='center')

def generate_pay_slips(data_dict, original_header, file_path):
    # Get the directory path for saving files
    dir_path = filedialog.askdirectory(title="请选择保存目录")

    if not dir_path:
        print("No directory selected. Exiting...")
        return

    # Get the filename without extension
    file_name = file_path.split('/')[-1].split('.')[0]

    # Generate pay slips for each employee
    for name, details in data_dict.items():
        # Create a new workbook for this employee
        wb = Workbook()

        # Remove the default sheet created by openpyxl
        default_sheet = wb.active
        wb.remove(default_sheet)

        # Create a new sheet for this employee
        ws = wb.create_sheet(name)

        # Filter out empty columns
        filtered_header = [h for h in original_header if details.get(h)]
        filtered_data = [details.get(h, '') for h in filtered_header]

        # Add a merged and centered row with the custom name
        num_cols = len(filtered_header)
        add_custom_row(ws, file_name, num_cols)

        # Write the filtered header row
        ws.append(filtered_header)

        # Write the filtered data row
        ws.append(filtered_data)

        # Save the workbook for this employee
        save_path = f"{dir_path}/{name}.xlsx"
        save_file(wb, save_path)

if __name__ == "__main__":
    input_path = select_file()
    if input_path:
        try:
            data_dict, original_header, _ = extract_data(input_path)
            generate_pay_slips(data_dict, original_header, input_path)
        except Exception as e:
            print(f"An error occurred: {e}")
kkisme 发表于 2024-11-9 23:52
感觉好厉害!收藏了,没准有一天能用到
您需要登录后才可以回帖 登录 | 注册[Register]

本版积分规则

返回列表

RSS订阅|小黑屋|处罚记录|联系我们|吾爱破解 - LCG - LSG ( 京ICP备16042023号 | 京公网安备 11010502030087号 )

GMT+8, 2025-1-8 19:18

Powered by Discuz!

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表