右键网页检查
搜索页面和这个相关的从而定位到引入文件
查找,一眼Base64编码的字体文件,通过这个编码数据解码获得原字体文件
找到之后进去查看
找到了,把里面内容复制下来,掐头去尾,是这样的数据
编写脚本进行解码,引号内填写base64编码数据去掉data:application/font-ttf;charset=utf-8;base64,
的开头声明"
import base64
# Base64编码的字符串
base64_string = "这里填写base64编码数据去掉data:application/font-ttf;charset=utf-8;base64,的开头声明"
# 解码Base64字符串
decoded_data = base64.b64decode(base64_string)
# 保存为.ttf文件
with open("chaoxing_font.ttf", "wb") as f:
f.write(decoded_data)
获得到base64的ttf文件结果
使用字体查看器查看字体 https://www.bejson.com/ui/font/
接下来将ttf文件转换成xml文件(python需要安装fontTools)
from fontTools.ttLib import TTFont
# TTF 文件路径
ttf_path = r"D:\UserData\Desktop\chaoxing_font.ttf"
xml_output_path = r"D:\UserData\Desktop\chaoxing_font.xml"
# 加载字体文件
font = TTFont(ttf_path)
# 保存为 XML 文件
font.saveXML(xml_output_path)
print(f"解析完毕")
抽选字体对比一下映射结果对不对(超星的加密是修改了此字体图元数据,显示成未加密的字)
下载原来的字体文件(非超星加密后的文件)
源字体文件对应
超星加密后字体
也就是说原来的5148对应着57C3
编写对比代码进行测试
import xml.etree.ElementTree as ET
import hashlib
import json
def parse_glyphs(file_path):
"""
解析字体文件中的 TTGlyph 信息
"""
tree = ET.parse(file_path)
root = tree.getroot()
glyphs = {}
for glyph in root.findall(".//TTGlyph"):
name = glyph.get("name")
points = []
for pt in glyph.findall(".//pt"):
x = pt.get("x")
y = pt.get("y")
on = pt.get("on")
points.append(f"{x}{y}{on}")
# 生成轮廓的唯一哈希值
hash_value = hashlib.md5("".join(points).encode('utf-8')).hexdigest()
# 截取哈希值的 25-32 位来作为唯一标识
truncated_hash = hash_value[24:32]
glyphs[truncated_hash] = name # 使用截取后的哈希值作为键
return glyphs
def get_unicode_character(name):
"""
根据 glyph 名称(如 uni5148)获取对应汉字
"""
if name.startswith("uni"):
try:
unicode_value = int(name[3:], 16)
return chr(unicode_value)
except ValueError:
return None
return None
def build_mapping(xml_old_path, xml_cx_path):
"""
建立思源黑体和超星字体的对照关系
"""
old_glyphs = parse_glyphs(xml_old_path)
print(len(old_glyphs))
cx_glyphs = parse_glyphs(xml_cx_path)
print(len(cx_glyphs))
mapping = []
for cx_hash, cx_name in cx_glyphs.items():
if cx_hash in old_glyphs:
old_name = old_glyphs[cx_hash]
character = get_unicode_character(old_name)
if character: # 确保是有效汉字
mapping.append({
"chaoxing": cx_name,
"si_yuan": {
"siyuan_name": old_name,
"siyuan_name_value": character
}
})
return mapping
if __name__ == "__main__":
xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"
result = build_mapping(xml_old_path, xml_cx_path)
# 输出到文件
with open("glyph_mapping.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=4)
# 打印部分结果
# print(json.dumps(result[:5], ensure_ascii=False, indent=4))
生成结果
[
{
"chaoxing": "uni57C2",
"si_yuan": {
"siyuan_name": "uni2FAF",
"siyuan_name_value": "⾯"
}
},
{
"chaoxing": "uni57E0",
"si_yuan": {
"siyuan_name": "uni5584",
"siyuan_name_value": "善"
}
},
{
"chaoxing": "uni580F",
"si_yuan": {
"siyuan_name": "uni4E16",
"siyuan_name_value": "世"
}
},
{
"chaoxing": "uni581D",
"si_yuan": {
"siyuan_name": "uni5BB3",
"siyuan_name_value": "害"
}
},
{
"chaoxing": "uni900B",
"si_yuan": {
"siyuan_name": "uni2F83",
"siyuan_name_value": "⾃"
}
}
]
我采用的字符串是
超星:下埂关于“好好埃生”的埄埆哪埇不埁准埅?
思源:下面关于“好好先生”的描述哪项不太准确?
结合对照表显示,发现字体字形数据并对不上,查看字体数据,针对“下“字进行分析,发现两边结果并对不上,结果是超星对于字体字形进行了更改,并不是简单的对比字符哈希值就可以对比出来的了。
查看对比效果
左侧为原版字体,右侧为学习通字体
百度到” I Am I“大佬的文章”从学习通复制文字乱码看前端版权保护“找到一定的思路是假设字符的边距是唯一的,好的,那么我们就拼接边距距离。得出以下代码
import xml.etree.ElementTree as ET
import hashlib
import json
def parse_glyphs(file_path):
"""
解析字体文件中的 TTGlyph 信息,使用 xMin, yMin, xMax, yMax 作为唯一标识
"""
tree = ET.parse(file_path)
root = tree.getroot()
glyphs = {}
for glyph in root.findall(".//TTGlyph"):
name = glyph.get("name")
# 获取 xMin, yMin, xMax, yMax
xMin = glyph.get("xMin")
yMin = glyph.get("yMin")
xMax = glyph.get("xMax")
yMax = glyph.get("yMax")
# 使用这四个值拼接成唯一标识符
if xMin and yMin and xMax and yMax:
unique_key = f"{xMin}{yMin}{xMax}{yMax}"
glyphs[unique_key] = name # 用四个边界值作为唯一键,值为glyph名称
return glyphs
# def parse_glyphs(file_path):
# """
# 解析字体文件中的 TTGlyph 信息
# """
# tree = ET.parse(file_path)
# root = tree.getroot()
#
# glyphs = {}
#
# for glyph in root.findall(".//TTGlyph"):
# name = glyph.get("name")
# points = []
# for pt in glyph.findall(".//pt"):
# x = pt.get("x")
# y = pt.get("y")
# on = pt.get("on")
# points.append(f"{x}{y}{on}")
#
# # 生成轮廓的唯一哈希值
# hash_value = hashlib.md5("".join(points).encode('utf-8')).hexdigest()
# glyphs[hash_value] = name # 哈希值对应 glyph 名称
#
# return glyphs
def get_unicode_character(name):
"""
根据 glyph 名称(如 uni5148)获取对应汉字
"""
if name.startswith("uni"):
try:
unicode_value = int(name[3:], 16)
return chr(unicode_value)
except ValueError:
return None
return None
def build_mapping(xml_old_path, xml_cx_path):
"""
建立思源黑体和超星字体的对照关系
"""
old_glyphs = parse_glyphs(xml_old_path)
# print(len(old_glyphs))
cx_glyphs = parse_glyphs(xml_cx_path)
# print(len(cx_glyphs))
# print(cx_glyphs)
mapping = []
for cx_hash, cx_name in cx_glyphs.items():
if cx_hash in old_glyphs:
old_name = old_glyphs[cx_hash]
character = get_unicode_character(old_name)
if cx_name == 'uni5814':
print(cx_hash)
print(old_name)
if character: # 确保是有效汉字
mapping.append({
"chaoxing": cx_name,
"si_yuan" : {
"siyuan_name": old_name,
"siyuan_name_value": character
}
})
return mapping
if __name__ == "__main__":
xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"
result = build_mapping(xml_old_path, xml_cx_path)
# 输出到文件
with open("glyph_mapping.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=4)
# 打印部分结果
# print(json.dumps(result[:5], ensure_ascii=False, indent=4))
再通过匹配结果进行查看数据
import json
# 读取json
def load_mapping(file_path):
with open(file_path, "r", encoding="utf-8") as f:
return json.load(f)
# 获取字符对应的 uni 名称
def get_uni_name(character, mapping):
unicode_name = f"uni{ord(character):X}"
# print(unicode_name)
for entry in mapping:
if entry["chaoxing"] == unicode_name:
return entry
return None
# 解析字符串
def parse_code(code, mapping):
result = []
for char in code:
mapping_entry = get_uni_name(char, mapping)
if mapping_entry:
result.append({
"char": char,
"message": mapping_entry["si_yuan"]['siyuan_name_value']
})
else:
result.append({
"char": char,
"message": char
})
return result
# 测试代码
if __name__ == "__main__":
# 读取字形映射
glyph_mapping_file = "glyph_mapping.json"
mapping = load_mapping(glyph_mapping_file)
# 示例字符串
code = '下埂关于“好好埃生”的埄埆哪埇不埁准埅?'
# 解析字符串
parsed_result = parse_code(code, mapping)
# 输出解析结果
# for item in parsed_result:
# print(item)
print(f'超星字体:{code}')
siyuan_font = ''.join([item['message'] for item in parsed_result])
print(f'思源字体:{siyuan_font}')
得出结果
超星字体:下埂关于“好好埃生”的埄埆哪埇不埁准埅?
思源字体:下⾯关于“好好先生”的描述哪项不太准确?
在大佬的测试中,是可以确定90%左右的字符数据的。如果您不想看了,到这里就可以了,基本满足所有的效果了。
然后由于最近领导给我一些任务就是比较两个字符串的相似度,通过这个启发就想通过xy向量计算字符字形的相似度。得出以下代码,首先针对”下”字进行数据测试
-
归一化:将所有点归一化到相同的尺度。(如果不归一,DTW有要求长度一样,会报错)
归一化点集(Normalization of points)是指将原始点集中的每个点的坐标变换到一个特定的标准范围,以消除由于坐标范围不同而引起的差异,从而使得数据的比较更加公正和一致。具体而言,在这段代码中,归一化的目标是将每个点的坐标缩放到 [0, 1]
的范围内。
为什么要进行归一化?
在计算点集之间的相似度时(如使用动态时间规整 DTW),不同的点集可能有不同的坐标范围或单位。如果不进行归一化,可能会因为坐标差异较大,导致计算出的相似度偏差较大。归一化的过程能够消除这种影响,让两个点集具有相同的尺度,从而公平地比较它们之间的相似性。
举个例子:
假设有一个点集:
points = [(10, 20), (30, 40), (50, 60), (70, 80)]
经过归一化处理后:
- 最小值:
min_x = 10
, min_y = 20
- 最大值:
max_x = 70
, max_y = 80
每个点将会变成:
(10, 20)
变成 (0, 0)
(30, 40)
变成 (0.333, 0.333)
(50, 60)
变成 (0.666, 0.666)
(70, 80)
变成 (1, 1)
最终,这些点就会被归一化到 [0, 1]
的范围内,这样它们的尺度是一致的,适合用于后续的相似度计算。归一化的目的是消除不同点集之间的坐标尺度差异,使得不同的点集可以在相同的尺度下进行比较。通过这种方式,我们可以更加公平地计算它们之间的相似度,而不会因为坐标的差异导致错误的比较结果。
-
使用DTW进行点对齐:保持原有的DTW对齐方法。
这里计算两个点集的相似度分数,通过DTW距离计算得出一个0~1的相似度分数。1完全相似,0完全不一样。
函数使用 fastdtw
函数计算归一化后的两个点集之间的 DTW 距离。DTW 是一种衡量两组时间序列相似度的算法,常用于处理不等长、速度不同的序列数据。在这里,它也可以用于比较两个二维点集的相似度。
- 计算相似度:基于对齐后的点集计算相似度。
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
# 假设我们已经有了两个字形的数据
ttglyph_superstar = [
(515, 695), (515, 517), (526, 530), (749, 421), (884, 320),
(838, 259), (731, 347), (515, 461), (515, -72), (445, -72),
(445, 695), (59, 695), (59, 762), (942, 762), (942, 695)
]
ttglyph_sourcehan = [
(515, 695), (515, 517), (526, 530), (618, 485), (720, 426),
(825, 364), (884, 320), (838, 259), (788, 300), (694, 359),
(606, 413), (515, 461), (515, -72), (445, -72), (445, 695),
(59, 695), (59, 762), (942, 762), (942, 695)
]
# 转换为numpy数组
points1 = np.array(ttglyph_superstar)
points2 = np.array(ttglyph_sourcehan)
def normalize_points(points):
"""
归一化点集
"""
if len(points) == 0: # 检查点集是否为空
return []
points = np.array(points) # 将点集转换为NumPy数组
min_x, min_y = np.min(points, axis=0)
max_x, max_y = np.max(points, axis=0)
# 防止除以零
if max_x == min_x:
max_x = min_x + 1
if max_y == min_y:
max_y = min_y + 1
normalized_points = (points - [min_x, min_y]) / [max_x - min_x, max_y - min_y]
return normalized_points
def calculate_similarity(points1, points2):
"""
使用DTW计算两个点集之间的相似度
"""
points1_normalized = normalize_points(points1)
points2_normalized = normalize_points(points2)
if len(points1_normalized) == 0 or len(points2_normalized) == 0:
return 0.0 # 如果任一点集为空,相似度为0
#distance 是 DTW 算法计算出来的总距离,表示两个点集的整体差异。
#path 是 DTW 算法找到的最佳对齐路径,指示了如何从 points1 映射到 points2。
distance, path = fastdtw(points1_normalized, points2_normalized, dist=euclidean)
# DTW 算法会计算出一组“对齐”路径,通过这个路径可以重新排列两个点集,使它们更好地对齐。根据 path 的内容,分别从 points1_normalized 和 points2_normalized 中提取对齐后的点集。
aligned_points1 = [points1_normalized[i] for i, _ in path]
aligned_points2 = [points2_normalized[j] for _, j in path]
# 计算对齐点之间的欧几里得距离,在最佳对齐下,每对点之间的差异。np.linalg.norm 计算的是两点之间的欧几里得距离
distances = [np.linalg.norm(np.array(p1) - np.array(p2)) for p1, p2 in zip(aligned_points1, aligned_points2)]
# 算出所有欧氏距离去平局书,得出平均欧氏距距离
average_distance = np.mean(distances)
similarity_score = 1 / (1 + average_distance)
return similarity_score
print(f"Similarity score: {calculate_similarity(points2,points1)}")
得出结果
Similarity score: 0.975700703557036
发现相似度还是很高的,这里是需要忽略字体的风格的,和笔画的这些。
好的,可以通过这种相似度算法去核对超星字体对应的元数据了。
import xml.etree.ElementTree as ET
import json
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from tqdm import tqdm
def parse_glyphs(file_path):
"""
解析字体文件中的 TTGlyph 信息
"""
tree = ET.parse(file_path)
root = tree.getroot()
glyphs = {}
for glyph in root.findall(".//TTGlyph"):
name = glyph.get("name")
points = []
for pt in glyph.findall(".//pt"):
x = int(pt.get("x"))
y = int(pt.get("y"))
on = int(pt.get("on", 0)) # 默认值为0,如果不存在则设为0
points.append((x, y))
# 将点集转换为字符串,作为字典的键
key = str(points)
glyphs[key] = name
return glyphs
def get_unicode_character(name):
"""
根据 glyph 名称(如 uni5148)获取对应汉字
"""
if name.startswith("uni"):
try:
unicode_value = int(name[3:], 16)
return chr(unicode_value)
except ValueError:
return None
return None
def normalize_points(points):
"""
归一化点集
"""
if not points: # 检查点集是否为空
return []
points = np.array(points) # 将点集转换为NumPy数组
min_x, min_y = np.min(points, axis=0)
max_x, max_y = np.max(points, axis=0)
# 防止除以零
if max_x == min_x:
max_x = min_x + 1
if max_y == min_y:
max_y = min_y + 1
normalized_points = (points - [min_x, min_y]) / [max_x - min_x, max_y - min_y]
return normalized_points
def calculate_similarity(points1, points2):
"""
使用DTW计算两个点集之间的相似度
"""
points1_normalized = normalize_points(points1)
points2_normalized = normalize_points(points2)
if len(points1_normalized) == 0 or len(points2_normalized) == 0:
return 0.0 # 如果任一点集为空,相似度为0
distance, path = fastdtw(points1_normalized, points2_normalized, dist=euclidean)
aligned_points1 = [points1_normalized[i] for i, _ in path]
aligned_points2 = [points2_normalized[j] for _, j in path]
distances = [np.linalg.norm(np.array(p1) - np.array(p2)) for p1, p2 in zip(aligned_points1, aligned_points2)]
average_distance = np.mean(distances)
similarity_score = 1 / (1 + average_distance)
return similarity_score
def build_mapping(xml_old_path, xml_cx_path):
"""
建立思源黑体和超星字体的对照关系
"""
old_glyphs = parse_glyphs(xml_old_path)
print(f'思源字体:{len(old_glyphs)}')
cx_glyphs = parse_glyphs(xml_cx_path)
print(f'超星字体:{len(cx_glyphs)}')
mapping = []
total_combinations = len(old_glyphs) * len(cx_glyphs)
with tqdm(total=total_combinations, desc="Processing") as pbar:
for old_key, old_name in old_glyphs.items():
for cx_key, cx_name in cx_glyphs.items():
similarity = calculate_similarity(eval(old_key), eval(cx_key))
if similarity >= 0.9:
mapping.append({
"chaoxing": {
"cx_name": cx_name,
"cx_character": get_unicode_character(cx_name)
},
"si_yuan": {
"sy_name": old_name,
"sy_character": get_unicode_character(old_name)
},
"similarity": similarity
})
pbar.update(1)
return mapping
if __name__ == "__main__":
xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"
result = build_mapping(xml_old_path, xml_cx_path)
# 输出到文件
with open("glyph_mapping2.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=4)
# print(json.dumps(result[:5], ensure_ascii=False, indent=4))
但是运行效果不如人意
这么长的时间肯定是不能忍的,所有采用多线程的处理方式,cpu就应该忙起来了。
from concurrent.futures import ProcessPoolExecutor, as_completed
import json
import numpy as np
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
from tqdm import tqdm
import xml.etree.ElementTree as ET
# 其他函数不变,保持之前的代码
def calculate_similarity(points1, points2):
"""
使用DTW计算两个点集之间的相似度
"""
points1_normalized = normalize_points(points1)
points2_normalized = normalize_points(points2)
if len(points1_normalized) == 0 or len(points2_normalized) == 0:
return 0.0 # 如果任一点集为空,相似度为0
distance, path = fastdtw(points1_normalized, points2_normalized, dist=euclidean)
aligned_points1 = [points1_normalized[i] for i, _ in path]
aligned_points2 = [points2_normalized[j] for _, j in path]
distances = [np.linalg.norm(np.array(p1) - np.array(p2)) for p1, p2 in zip(aligned_points1, aligned_points2)]
average_distance = np.mean(distances)
similarity_score = 1 / (1 + average_distance)
return similarity_score
def normalize_points(points):
"""
归一化点集
"""
if not points: # 检查点集是否为空
return []
points = np.array(points) # 将点集转换为NumPy数组
min_x, min_y = np.min(points, axis=0)
max_x, max_y = np.max(points, axis=0)
# 防止除以零
if max_x == min_x:
max_x = min_x + 1
if max_y == min_y:
max_y = min_y + 1
normalized_points = (points - [min_x, min_y]) / [max_x - min_x, max_y - min_y]
return normalized_points
def parallel_calculate_similarity(old_key, old_name, cx_glyphs):
"""
并行计算相似度
"""
results = []
for cx_key, cx_name in cx_glyphs.items():
similarity = calculate_similarity(eval(old_key), eval(cx_key))
if similarity >= 0.9:
results.append({
"chaoxing": {
"cx_name": cx_name,
"cx_character": get_unicode_character(cx_name)
},
"si_yuan": {
"sy_name": old_name,
"sy_character": get_unicode_character(old_name)
},
"similarity": similarity
})
return results
def get_unicode_character(name):
"""
根据 glyph 名称(如 uni5148)获取对应汉字
"""
if name.startswith("uni"):
try:
unicode_value = int(name[3:], 16)
return chr(unicode_value)
except ValueError:
return None
return None
def parse_glyphs(file_path):
"""
解析字体文件中的 TTGlyph 信息
"""
tree = ET.parse(file_path)
root = tree.getroot()
glyphs = {}
for glyph in root.findall(".//TTGlyph"):
name = glyph.get("name")
points = []
for pt in glyph.findall(".//pt"):
x = int(pt.get("x"))
y = int(pt.get("y"))
on = int(pt.get("on", 0)) # 默认值为0,如果不存在则设为0
points.append((x, y))
# 将点集转换为字符串,作为字典的键
key = str(points)
glyphs[key] = name
return glyphs
def build_mapping_parallel(xml_old_path, xml_cx_path):
"""
并行建立思源黑体和超星字体的对照关系
"""
old_glyphs = parse_glyphs(xml_old_path)
print(f'思源字体:{len(old_glyphs)}')
cx_glyphs = parse_glyphs(xml_cx_path)
print(f'超星字体:{len(cx_glyphs)}')
mapping = []
# 使用进程池进行并行处理
with ProcessPoolExecutor() as executor:
futures = []
# 为每个思源字体字形提交任务
for old_key, old_name in old_glyphs.items():
futures.append(executor.submit(parallel_calculate_similarity, old_key, old_name, cx_glyphs))
# 通过 as_completed 获取计算结果
for future in tqdm(as_completed(futures), total=len(futures), desc="Processing"):
mapping.extend(future.result())
return mapping
if __name__ == "__main__":
xml_old_path = r"D:\UserData\Desktop\思源黑体.xml"
xml_cx_path = r"D:\UserData\Desktop\chaoxing_font.xml"
result = build_mapping_parallel(xml_old_path, xml_cx_path)
# 输出到文件
with open("glyph_mapping_parallel.json", "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=4)
# 打印部分结果
print(json.dumps(result[:5], ensure_ascii=False, indent=4))
这样处理时间来到了半小时(不过cpu要满了),因为我要求把大于0.9的数据全弄出来了,所以会有很多重复的字形数据。这里还需要取出相似度最高的那一个字形数据。
import json
# 读取保存的结果文件并生成包含所有相似度最高数据的 high.json 文件
def find_most_similar_for_all(result_file="glyph_mapping_parallel.json", output_file="high.json"):
# 读取 JSON 数据
with open(result_file, "r", encoding="utf-8") as f:
data = json.load(f)
# 用于存储每个 chaoxing 对应的最相似的 si_yuan 对照项
highest_similarity_entries = {}
# 遍历所有条目,找出每个 chaoxing 字符对应的最相似的 si_yuan 对照项
for entry in data:
cx_name = entry["chaoxing"]["cx_name"]
similarity = entry["similarity"]
# 如果该 cx_name 没有出现过,或者当前相似度更高,更新最相似的条目
if cx_name not in highest_similarity_entries or similarity > highest_similarity_entries[cx_name]["similarity"]:
highest_similarity_entries[cx_name] = entry
# print(len(highest_similarity_entries))
# 将结果保存到 high.json 文件
with open(output_file, "w", encoding="utf-8") as f:
json.dump(list(highest_similarity_entries.values()), f, ensure_ascii=False, indent=4)
print(f"已将结果保存到 {output_file}")
# 调用函数,生成 high.json 文件
find_most_similar_for_all()
至此,我们以及彻底完成了映射表的制作。然后拿数据跑一下进行测试
import json
# 读取 high.json 文件并加载数据
def load_high_json(file_path="high.json"):
with open(file_path, "r", encoding="utf-8") as f:
return json.load(f)
# 根据 high.json 匹配字符串中的每个字符,返回结果字符串
def match_string_with_high_json(code, high_json_data):
result = []
for char in code:
# 遍历 high.json 中的所有项,查找匹配的 cx_character
matched = False
for entry in high_json_data:
if entry["chaoxing"]["cx_character"] == char:
# 根据需要将匹配的结果拼接成字符串
result.append(entry["si_yuan"]["sy_character"]) # 使用 si_yuan 对应的字符
matched = True
break
if not matched:
# 如果没有找到匹配的项,保留原字符
result.append(char)
# 将匹配结果列表合并成一个字符串
return ''.join(result)
# 示例字符串
code = '下埂关于“好好埃生”的埄埆哪埇不埁准埅?'
# 加载 high.json 数据
high_json_data = load_high_json()
# 匹配字符串
result_string = match_string_with_high_json(code, high_json_data)
print(f'超星字体:{code}')
print(f'思源字体:{result_string}')
得出结果
超星字体:下埂关于“好好埃生”的埄埆哪埇不埁准埅?
思源字体:下⾯关于“好好先生”的描述哪项不太准确?
好的,已经可以了,这里关于超星字体的时候,有个疑问就是为什么每个页面加载页面的字体,不能拿到全部的,我这个不知道咋弄,很困扰我,希望有大佬可以帮忙解释一下。
至此,文章彻底结束。
参考文章:
关于超星学习通网页版字体加密分析 :https://www.52pojie.cn/thread-1631357-4-1.html
从学习通复制文字乱码看前端版权保护:https://5ime.cn/xxt_font.html