新人一枚,想给论坛贡献一份力量,就把我以前写的一些教程发到论坛里,希望可以给大家带来帮助。
学习本教程的前置基础
第二个定义可能理解有点难度,举个例子:
让机器学会跳棋,而跳棋游戏的经验E就是程序与自己下几万次跳棋,任务T就是玩跳棋,性能度量P就是与新对手玩跳棋时赢的概率
2.监督学习
监督学习是指给机器一定的训练集,训练集里每个元素都有相应的正确标签。让机器学习这些训练集,来训练出可以达到预期相应的正确标签的模型,也就是说给定机器学习的目标,让机器自己去学习。
举个例子:
假设你要预测房价,你收集了房价信息,并绘制了数据集,就像这样:
横轴是房子的大小,竖轴是房价的多少,有了这些数据,你要训练出一个模型来拟合这些数据以便于你代入其他的数据来预测房价,就好像是找到一条函数符合这些数据。这就是最简单的监督学习,也就是我们说的回归模型。
再举一个例子:
有两类照片,一类是狗,一类是猫,我们给每张照片分好类,做好标签制作出一个数据集。计算机用这些数据,来自己学习分类那个照片是猫那个照片是狗,这也就是分类模型。
3.非监督学习
在机器学习,无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。
比如谷歌新闻,谷歌新闻会不停的收集不同的新闻页面,谷歌的服务器会自动把这些新闻分类。
|